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ABSTRACT

This paper investigates the inhibition performance of a typical imidazoline based inhibitor under
multiphase flow. Electrochemical impedance spectroscopy (EIS) measurements were carried out in a
101.6 mm I. D.,15 m long acrylic flow loop using ASTM substitute saltwater and carbon dioxide gas.
This flow loop system can generate slug flow, fill pipe flow and other multiphase flow patterns. Effects

of different flow conditions on inhibition performance of this typical inhibitor were examined. The
system was maintained at a pressure of 0.136 MPa and a temperature of 40 “C. EIS measurements for
this inhibitor in a Rotating Cylinder Electrode (RCE) system were also conducted. Different equivalent
circuit models were used to fit the experiment data for both the RCE and flow loop systems. The high
shear stress and turbulence due to the mixing vortex and the bubble impact in multiphase flow can
enhance the corrosion or reduce the inhibition performance of inhibitors.
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INTRODUCTION

Corrosion inhibitors play an important role in preventing internal corrosion in carbon steel
pipelines that transport mixture of oil, water, natural gas and carbon dioxide gas. Imidazoline based
corrosion inhibitors are well known to have a high inhibition activity to minimize carbon dioxide-
induced oil field corrosion. The successful selection of inhibitors depends on a clear understanding of
the operational conditions, fluid properties, solution pH and chemistry, and flow conditions. Fluid
conditions include flow velocity and water cut. Inability to predict the flow patterns in multiphase
pipelines could seriously affect the inhibitor selection, and thus reduce its effectiveness 1.

Multiphase flow can be classified into many different flow patterns as shown in Figure 1. At high
production rates, the slug flow regime is prominent. The profile of a slug is shown in Figure 22. Ahead
of a slug, a concurrent slow moving liquid film flows with gas above it. The high gas velocity results in
waves at the interface. These waves grow with increasing in liquid flow and bridge the pipe. The higher

gas velocity accelerates these, forming a fast moving slug. A mixing zone is created in this process. This
leads to a scouring mechanism on the pipe wall with the high rate of shear. As the liquid is scooped up
into the slug, the leading edge of the slug jumps to the top of the pipe and entrains considerable amounts
of gas. This results in a highly frothy turbulent region behind the slug front. The gas in the mixing zone
is in the form of pulse of bubbles. These bubbles are trapped by the mixing vortex and shot to the bottom
of the pipe where they can impact and collapse on the pipe walls. A slug flow is known to significantly
enhance internal corrosion in oil/water/gas pipelines 34. This is due to the high levels of shear
turbulence occurring in slug mixing zone 5-7.

Slug flow is characterized by Froude number Fr ‘0,which is defined as following formula:

Where V, =
Jrf =
g=

&.

~r = n-v,
)

~g * hlff

translational velocities of the slug front, m/s;
average velocity of the liquid film, rnk;
the acceleration due to gravity, m/s2 ;
the effective height of the liquid film, m.

(1)

and

The inhibition performance of corrosion inhibitors has been studied by various researchers. They 8-9
carried out their studies in RCE or small-scale flow loop using brine saturated with carbon dioxide.
These test systems do not often represent the real flow conditions.

EIS measurements involve applying a small potential to the electrode surface. The current
response to the applied potential can differ in phase and magnitude. Measurement of the difference in
phase and amplitude permits analysis of the electrode process in relation to contributions from diffhsion,
charge transfer, double layer and inhibitor film. EIS offers some distinct advantages over conventional
methods. EIS is a very useful tool for providing information on inhibitor film growth and for generating

parameters, which are specific to a particular corrosion inhibitor system. Equivalent electical circuit
model provides a helpful way to interpret and quantify the EIS spectra if the physical models are
understood.

This paper presents results for the study on inhibition performance of an imidazoline based
corrosion inhibitor package formulated with imidazoline salt and quaternary amine under multiphase



flow conditions using EIS. The results for this inhibitor package in RCE system were compared with

those under multiphase flow.

Multiphase Flow loop

Experiments were carried out in a 101.6 mm I.D., 15 m long acrylic flow loop. The schematic
layout of the system is shown in Figure 3(a). It is similar to the one designed by Jepson’O. A prepared
ASTM substitute saltwater is placed in the 1.4 m3 stainless steel tank A. The liquid from the tank is

pumped into the 76 mm I.D. PVC pipe by 1.5 kW centrifugal pump. The flow rate of the liquid is
controlled by a bypass line B and is measured by a calibrated orifice meter D. Liquid is passed into a 76
mm I.D. PVC pipe and then forced under gate E into the 101.6 mm I.D. plexiglass pipe where it formed
a fast moving liquid film. The carbon-dioxide gas is introduced into the system at port F. The gas-liquid
mixture passes through the plexiglass pipeline and enters the tank where the liquid is separated using a
de-entrainer plate inside the tank. Liquid is recycled and gas is vented to the atmosphere through the
exhausted at the top of the tank. The carbon dioxide gas is also used to pressurize the system. The
pressure inside the tank is indicated by the gauge I, installed on the top of the tank. All the
measurements are taken in the test section G located 8 m downstream from the gate. For slug flow, a
hydraulic jump is generated and moved to the test section by controlling the gas flow at the inlet F. This
is done using a needle valve in conjunction with a flow control system. The liquid inside the tank is
heated by two 1.5 kW heater positioned at K. The EIS probe and coupons were inserted into the test
section G shown in Figure 3(b), and are flush mounted with the pipe wall. The EIS probe consists of
three electrodes. The working electrode is made of carbon steel. The counter and reference electrodes are
made of stainless steel. The surface area of the electrode is 0.785 cm 2.

Tests were performed using saltwater and carbon dioxide gas. Once the de-oxygenation process
is completed, the EIS probe is polished by 600-grid sandpaper , rinsed with acetone and distilled water
and then inserted into the test section and EIS measurements are started. For slug flow experiments, the
liquid flow rate is adjusted to a value required to given the desired Froude number and the liquid is
forced through the gate. At this point a hydraulic jump is created. The hydraulic jump is stationary inside
the test section with the control system on the gas line. Full pipe flow was studied for liquid velocity of
1.25 rds and slug flow for Froude numbers 6 and 9. The system temperature and pressure are
maintained constant at 40 “C and 0.136 MPa for all experiments. The concentration of the inhibitor was
25 ppm based on the total fluid.

Rotating Cylinder Electrode

The electrochemical cell is schematically shown in Figure 4(a). The working electrode is C-101 8
mild steel with a total area of 3.02 cm2. The counter electrodes are two graphite electrodes, and the
reference electrode is a Saturated Calomel Electrode (SCE) connected to a salt bridge. The

electrochemical cell containing 250 ml of saltwater was de-aerated with C02 for 1 hour to ensure C02
saturation of the brine.



A coupon as shown in Figure 4(b) was pre-polished with 600-grid sandpaper, rinsed with
distilled water and acetone. The coupon was installed on the shaft and placed into the cell as the working
electrode. The solution was stirred using a stirrer at 1000 rpm and C02 was continuously sparged into
the system. Temperature was maintained at 40 “C. The concentrations of the inhibitor tested were 10
and 25 ppm.

All data were taken using the EIS electrochemical measurement system. EIS measurements were
carried out at open circuit potentials with amplitude of 10 mV in the frequency range about 20 mHz to 5
kHz. For the RCE system, EIS measurements were conducted 2 hours after coupon immersion to
establish the baseline data. The inhibitor of desired concentration (e.g. 25 ppm) was then injected into
the cell after the pre-corrosion step. EIS measurements were conducted every hour during time of
inhibition testing. For the flow loop tests, two kinds of experimental procedures were used. One was the

same as REC system, which had the pre-corrosion step. EIS measurements were conducted 2 hours after
coupon immersion to take the baseline data, followed by inhibitor addition. For inhibition testing in flow
loop without pre-corrosion, the probe was placed in the inhibitor containing system directly. EIS
measurements were conducted every hour during the inhibition testing for both experiments.

EQUIVALENT CIRCUIT MODELS

The analysis of EIS data is commonly carried out with the aid of equivalent electrical circuit
models. The purpose is to determine individual components of the equivalent circuit model that
represents the corroding system including metal/solution interface. Figure 5 shows the equivalent circuit
models used in this work. For simple corrosion processes, which are under charge transfer control can be
described by the electrical circuit (a) ’l. Here ~ is the charge transfer resistance which is inversely
proportional to the corrosion rate, I&is the solution resistance, and C~lis the double layer capacitance that
characterizes the charge separation between the metal and electrolyte interface. However the double
layer capacitor does not behave ideally. The impedance (Z) of a capacitor has the form:

(2)

When this equation describes an ideal capacitor, the constant A is equal to l/C and the exponent a =1.
For a non - ideal capacitor, the value of u is less than one. The use of ct is only a formal description of
non-ideal behavior of double layer, its physical meaning is not clear 1]. Also, this non-ideal behavior of
capacitor can be described as Constant Phase Element (CPE). Circuit (a) is also called as CPE model.

Circuit (b) models a cell where electrochemical process includes kinetic and diffusion processes.
The experimental phase angle approaches 45° at low frequency, which responds to the diffusion process
on the electrode. Diffision impedance is known as the Warburge impedance, W~. This impedance
depends on the frequency of the potential perturbation. The equation for Wargurg impedance 12is:

W~= o (0)-1’2 (l-j) (3)

Where, o =Warburg coefficient, Ohm.s’n;
CD=2n~ rad.s-’.



For the case of the metal surface that is covered by inhibitor film with pores, circuit (b) is
modified to circuit (c). The nested circuit is used to indicate that pores within the inhibited film can
cause metallic corrosion by the electrolyte that has direct access to the metal surface. When there are
pores on this inhibitor film, the active species of electrolyte can pass through the pores to reach the metal
surface. Here C~is the inhibitor film capacitor, which is a non-ideal capacitor. F$Ois the pore resistance
arising by the formation of ionically conducting paths in the film 12.

RESULTS AND DISCUSSION

Rotating Cylinder Electrode System

Figure 6 shows the EIS spectra of a C-1 018 coupon in the presence of 10 ppm corrosion inhibitor
at various exposure time in C02-saturated 100°/0 saltwater. Figures 6(a)(b)(c) are examples of Nyquist
plot, Bode impedance plot, Bode phase plot, respectively. The equivalent electrical circuit model shown
in Figure 5(a) was used to interpret metal-solution interface in this case. The shape of Nyquist plot
shows one semicircle for the whole period. The solution resistance, & is obtained at an intersection of
the semicircle with the real impedance axis on the left side, which corresponds to the impedance
modulus at the high frequency in Figures 6(b). The charge transfer resistance, ~ is the size of diameter
of the semicircle. Figure 6(a) shows that the diameters of semicircles after the addition of inhibitor are
larger than that of the blank test. Figure 6(b), the impedance Bode plot shows the same trend in that ~ is
related to the plateau at low frequency on the impedance modulus vs. frequency plot. Separated
experiments up to ten hours show that the diameters of the semicircles did not change as significantly as
shown in Figure 6(a). Results as shown in Figure 6 indicate that charge transfer resistance increases
significantly both after inhibitor addition and increasing time and the larger the charge transfer
resistance, Rt, the lower the corrosion rate. Results indicate that the inhibition efficiency increases with
time in the test.

Figure 7 shows that the EIS spectra of a C-1 018 coupon in the presence of 25 ppm inhibitor in
C02 saturated 100 % seawater. Again the Nyquist plot shows one semicircle shape with or without the
present of inhibitor. The charge transfer resistance, ~ increases after addition of inhibitor and increases
with time. Compared to Figure 6, charge transfer resistance for 25 ppm concentration is larger than that
at 10 ppm at the same immersion time, indicating increasing inhibition efficiency with inhibitor
concentration.

It is well known that the imidazoline based inhibitor covers metal stiace through the blocking

effect. Inhibition effectiveness of a corrosion inhibitor (O/O@is otien estimated by charge transfer
resistance according to the following equation 9:

R; - Rt
0/0 q = x 100!!/0

R;
(4)

where 1$’ is the charge transfer resistance in presence of corrosion inhibitor, ohm.cm2;
~ is the charge transfer resistance without corrosion inhibitor, ohm.cm2.

Figure 8 and 9 shows the inhibition efficiency and corrosion rate of this inhibitor package at the whole
testing period. The corrosion rate can be calculated as following 13.



Where, CR is the corrosion rate, mm/y;

~, and PCare the anodic and catholic Tafel constants, respectively, mV/decade;
K is constant (1 1.47 is used for metal C-1018 in this work).

The inhibition effectiveness for both concentrations increases with increasing time up to 5 hours, then
levels off. The inhibition effectiveness of 25 ppm inhibitor concentration is higher than that at 10 ppm,
especially at the very beginning of testing. After 5 hours, the inhibition effectiveness for 10 ppm is close
to that of 25 ppm. Corrosion rates for this inhibitor formulation at 25 ppm concentration, as shown in
Figure 9, decreases faster than 10 ppm. After five hours, corrosion rates for both concentrations level
off to the same value. Table 1 lists some simulation results of the above mentioned tests and corrosion
rates at 3.5 hours immersion time.

Multiphase F1OWLoop System

With Pre-Corrosion Procedure

Figure 10 shows the comparison of EIS plots in the presence of 25 ppm corrosion inhibitor at
various exposure time in C02-saturated 100°/0 seawater under slug flow at Froude 9 with the pre-
corrosion procedure. Compared to the blank test which shows a simple charge transfer process, the shape
of Nyquist curve in Figure 10(a) for inhibitor containing solution at different exposure time shows one
semicircle plus a low frequency tail. Circuit 5(b) was used to fit the experimental data and results at 3.5
hours immersion time are listed in Table 2. It can be seen in Table 2 that the change transfer resistance
in the flow loop system is much less than in the RCE system for both blank and inhibition tests. The
results indicate that the corrosion rates in the flow loop are much greater than that obtained in RCE
system. This is resulted from the higher shear stress and turbulence in flowing systems, specially, in the
slug flow. Corrosion rates in slug flow are much higher than that in RCE system. The inhibition
performance of the inhibitor is reduced in the multiphase flow system.

Figure 10(b) shows that the charge transfer resistance increases with time after the addition of
inhibitor, namely the corrosion rate decreases with time. In Figure 10(c), the phase angle at low
frequency area approaches slightly to the more negative value with exposure time increasing, which
indicates the diffbsion process occurring.

Figure 11 shows the comparison of EIS spectra of this model inhibitor at 25 ppm concentration

under Froude 9 slug flow withhithout pre-corrosion at different exposure times. In Figure 11(a) the
shapes of EIS plots without pre-corrosion seem to have another semicircle at high frequency, which
might represent the formation of the inhibitor film. The charge transfer resistance increases with

immersion time increasing for both cases.
Figure 11(c) shows that the phase angle plots look very different for these two procedures.

Another electrochemical process, which might represent film formation, is occurring at high for the case
without pre-corrosion. The diffusion process is also found at the low frequency like the case with pre-
corrosion. The experimental data without pre-corrosion can be modeled using circuit 5(c). The fitting
results are listed in Table 2. The film resistance can be determined for the case without pre-corrosion.



The charge transfer resistance without pre-corrosion is greater than that with pre-corrosion. This means
that inhibitor is less effective in the pre-corroded system. This could be explained by the surface
roughness as a result of pre-conosion process. The rough surface hinders inhibitor adsorption on the
metal surface, thus reduce inhibitor efficiency. Results show that inhibitor film was not adsorbed well on
the rough surface to give good protection and inhibitor give a
smooth surface.

much better inhibited film on the fresh and

Effects of Flow Patterns for The Case without Pre-corrosion

Figure 12 shows the comparison of experimental results for the model inhibitor at 25 ppm
concentration under slug flow at Froude number 6 and 9 and fill pipe flow at 0.5 hrs after coupon
immersion. The shapes of Nyquist plot for all the cases are typical as observed for the case without pre-
corrosion, which can be simulated using circuit 5(c). The Nyquist plot shows that the charge transfer
resistance is the smallest for slug flow at Froude number 9 while the charge transfer resistance for full
pipe flow and slug flow at Froude number 6 are very similar. This can be expected because the slug flow
at lower Froude number 6 has lower turbulence and bubbles cannot reach the pipe wall as observed at
Froude number 9. Results suggest that the full pipe flow at 1.25 nds gives the similar flow effect to that
of slug flow at Froude number 6. Some fitting results are also shown in Table 2.

EIS spectra were obtained for the model inhibitor at concentration of 25 ppm for all flow patterns
at different immersion time. The amount of data is too great to be presented as EIS plots. Figure 13 and
14 are comparison of charge transfer resistance and diffusion impedance for 25 ppm inhibitor at different
flow patterns. The charge transfer resistance for fill pipe flow and slug flow at Froude number 6 are
very close as observed in Figure 12, with the diameters of semicircle of Nyquist plot being almost the
same and the charge transfer resistance being slightly lower for slug flow at Froude number 9. Also as
shown in Figure 13, the slug flow at Froude number 9 with pre-corrosion has the lowest charge transfer
resistance, which means that corrosion rate is the highest. Again, the results show that inhibitor for a
better film on a smoother surface as discussed above. The results obtained for diffusion impedance as
shown in Figure 14 seem to give the same tendency as the charge transfer resistance.

CONCLUSIONS

An imidazoline based inhibitor has been tested in a RCE system and pipeline using EIS. The one
time constant equivalent electrical circuit was used to simulate the EIS spectra for this model inhibitor in
the RCE system. This might suggest that the inhibitor film is uniform under this low shear stress system.
Inhibition effectiveness increases with time for the first several hours and then levels off.

The inhibition performance of this model inhibitor was studied in a multiphase pipeline. EIS was
used to monitor the corrosion process withhvithout the inhibitor in multiphase flow. For the cases with
pre-corrosion procedure, the circuit with the double layer ~-C~l network and diffision impedance, W~,
was used to interpret the electrochemical processes. This means that the corrosion processes under
inhibitor effects with pre-corrosion include charge transfer process and diffusion process. EIS spectra
did not show the formation of inhibitor films. Compared to results in RCE system, inhibition
performance of this inhibitor decrease and corrosion rates in the presence of inhibitor in slug flow
increase due to higher shear stress and turbulence.

Circuit (c), which includes film ~-C~ network, double layer F$ -Cd network and diffhsion
impedance, W~, describes the corrosion processes without pre-corrosion. Inhibitor film can be detected



on the metal surface for the case without pre-corrosion. The inhibitor performance for protecting
corrosion under multiphase flow can be described by an inhibitor film with pores covering the metal
surface. The pores within inhibitor film may be resulted from mechanical damage by the turbulence and
bubbles impact in multiphase flow. Corrosion rates in slug flow at higher Froude number is larger than
slug flow at lower Froude number and fill pipe flow. Corrosion rate under inhibition effects is increased
in slug flow due to the higher bubble impact and turbulence in multiphase flow.
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TABLE 1 – Comparison of fitting results for RCE and Froude number 9 slug flow
with pre-corrosion at 3.5 hours immersion time

Simulation results Tafel constants

System
[Cq

Model Rs Rt Wd ‘xO?l
ppm Pa p. Sv

ohm. cm2 ohm. cm2 ohm Stn mV/deed mV/deed

RCE o a 2.0 97.4 -- -- 72.1 240.4 2.63

RCE 10 a 4.2 309.6 -- 68.5 98.4 194.3 1.05

RCE 25 a 17.2 811.8 -- 88.0 106.2 160.2 0.39

Flow loop o
a 4.8 47.4 46.8 205.1 4.0

Fr=9 slug
-- --

Flow loop 25
Fr=9 slug

b 4.9 182.7 27.9 74.1 93.1 101.1 1.32

Notes, (1) The blank tests for RCE and pipeline are the separated experiment

Rt– R
(2) o/oq = ~ 100°/0 , ~’ is the charge transfer resistance in presence of corrosion inhibitor and R is the

R;

charge transfer resistance without corrosion inhibitor for the separated blank tests
(3) The Tafel curve measurements were taken following EIS tests at 3.5 hour of immersion time for all set

of experiments.



TABLE 2- Comparison of fitting results for flow loop at different flow patterns at 3.5 hour immersion time

Simulation results Tafel constants
Flow

‘??o’?l
[Cn Model R,pattern ppm R Wd b, Pc Zy

ohm. cm2 ohm. cm2 ohm. cm2 mV/deed mV/deed

Fr=9 slug o a 4.7 47.4 -- -- 46.8 205.1 4.00

Fr=6 slug o a 4.7 51.7 -- -- 41.8 277.9 3.50

Full pipe o a 4.7 73.7 -- -- 45.5 300.4 2.67

Fr=9 slug* 25 b 4.9 182.7 27.9 74.1 93.1 101.1 1.32

Fr=9 slug 25 c 4.1 252 37.7 81.2 120.4 118.2 1.18

FI=6 slug 25 c 3.0 285 32.1 81.9 130.9 115.4 1.07

Full pipe 25 c 5.2 288 38.5 74.4 124.7 112.3 1.02

Notes, (1) The blank tests for RCE and pipeline are the separated experiments

R;– R
(2) %oTl = ~ 100°/0, ~’ is the charge transfer resistance in presence of corrosion inhibitor and& is the

R;

charge transfer resistance without corrosion inhibitor for the separated blank tests
(3) Tafel curve measurements were taken following EIS tests at 3.5 hour of immersion time for all set of

experiments.
(4) * indicates the test with pre-corrosion procedure
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