Introduction

LITTLE FOR CORROSION

Research of high temperature corrosion inhibition of mild steel is important due to the increasing number of high temperature wells coming into the oil and gas production [1]. Operating such wells presents challenging economic, materials selection, design and corrosion problems; in particular, high temperature (T>150°C) corrosion of mild steel and more importantly, its mitigation. Most research focused on high temperature corrosion inhibition has only investigated the efficiency of the inhibitor without further clarifying the reasons of a lower corrosion rate; for example, whether the mitigation is due to the adsorption of inhibitor or formation of corrosion products. However, in earlier research activities related to investigating inhibition properties of an imidazoline-type inhibitor by this author [2], it was found that performance of an imidazoline-type inhibitor at 150°C was governed by the formation of corrosion product instead of by the adsorption of the inhibitor itself. It is understood that the formation of corrosion product (more specifically, Fe_3O_4) at elevated temperatures has a significant influence on high temperature corrosion [3]. However, its influence on mitigating mechanisms related to the use of corrosion inhibitors has heretofore not been studied.

In this research study, an innovative autoclave system was designed, commissioned and used to control timing of inhibitor injection at high temperature to elucidate the corrosion behavior of mild steel in a CO₂-saturated environment at 150°C using an imidazoline-type inhibitor. Corrosion rates were measured using linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Specimens retrieved after the experiments were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD).

Hypothesis

At 150°C, the formation of Fe_3O_4 is kinetically favored. The protectiveness of Fe_3O_4 is dominant and controls the corrosion rate

Objectives

- Investigate the effect of pre-corrosion on the performance of the imidazoline-type inhibitor at 150°C
- Identify the relationship between corrosion product formation and the adsorption of corrosion inhibitor at 150°C.

Experimental Details

Experimental set-up

Test matrix

Gas inlet				
Gas outlet Cas outlet Counter Mutoclave 1	Parameters	Description		
	Specimens	API 5L X65		
	Test solutions	1 wt.% NaCl		
	Test temperature/°C	150		
	Inhibitor concentration/ppmv	0	440	880
	Impeller speed/rpm	200		
	Initial pH at 80°C	4.30		
	Test duration/hour	24		
	Pre-corrosion/hour	0/0.5		

The Effect of Fe₃O₄ on the Performance of an Imidazoline-Type Corrosion Inhibitor at 150°C

Yuan Ding, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, USA

XRD patterns confirmed the presence of both $FeCO_3$ and Fe_3O_4 in the 150°C corrosion product, as indicated by Pourbaix diagram at 150°C. In addition, corrosion rate seemed to be governed by the formation of corrosion product when there was pre-corrosion.

Formation of corrosion product with the presence of inhibitor

The absence of apparent corrosion product layer at a value the imidazoline-type inhibitor can also prevent the formation of

- A competitive relationship was observed between the formation of corrosion product and the addition of corrosion inhibitor at 150°C.
- At 150°C, the formation of Fe_3O_4 dominated the corrosion behavior. However, by minimizing the formation of Fe_3O_4 , the performance of inhibitor on the steel surface was still detected, although the inhibitor
- Instead of providing corrosion protection, the major effect of the inhibitor is seen to be prevention of protection by corrosion product.

- [1]. A. Shadravan and M. Amani, "HPHT 101-what petroleum engineers and geoscientists should know about high pressure high temperature wells environment," Energy Sci.
- [2]. Y. Ding, B. Brown, D. Young, and M. Singer, "Effectiveness of an imidazoline-type inhibitor
- [3]. S. Gao, B. Brown, D. Young, and M. Singer, Formation of iron oxide and iron sulfide at high temperature and their effects on corrosion. Corrosion Science, 135, 167-176, 2018.

- Advisor: Dr. Marc Singer; Project leader: Dr. Bruce Brown; Director: Dr. Srdjan Nesic.
- Research sponsors: Anadarko, Baker Hughes, BP, Chevron, CNOOC, ConocoPhillips, DNV GL, ExxonMobil, M-I SWACO (Schlumberger), Multi-Chem (Halliburton), Occidental Oil Company, Petrobras, Petroleum Institute (Gas Research Center), PTT, Saudi Aramco, Shell Global Solutions, SINOPEC (China Petroleum), TransCanada, TOTAL, and Wood Group Kenny.