

Top of The Line Corrosion Behavior in Highly Sour Environments Najmiddin Yaakob, Institute for Corrosion and Multiphase Technology, OHIO UNIVERSITY, 2013

Introduction

Top of the line corrosion (TLC) mainly occurs when a significant temperature difference exists between the environment and the fluid inside the pipeline. This leads to water condensation on the inside wall of the pipeline [1].

Unlike for sour (H_2S) TLC, parameters involved in sweet (CO_2) TLC are well defined, namely water condensation rate, gas temperature, gas flow rate, CO₂ partial pressure and organic acid concentration [2]. However, the mechanisms of sour TLC, and sour corrosion for that matter, are not well understood. Only a limited amount of work has thus far been published, especially in high pressure H₂S environments. Consequently, little is known about the controlling parameters for TLC in sour environments.

Hypothesis & Objectives

Gas and steel temperature are the main parameters which control sour top of the line corrosion through formation of more stable and protective FeS layer/polymorphs at high temperature, while water condensation rate (WCR) is the second factor where higher WCR would lower down the steel temperature and increase the TLC rate.

- a) Investigate the effect of gas/steel temperature in sour TLC.
- b) Study the effect of water condensation rate in sour TLC.
- c) Characterize the formation of various iron sulfide polymorphs on the metal surface

Investigating	Temperature/water condensation rate			
Test material	API 5L X-65 carbon steel			
Total pressure (bar)	28			
Gas temperature (°C)	25	40	60	80
Condensation rate (mL/m ² /s)	0.01	0.01&0.04	0.02&0.21	0.02&0.51
H ₂ S partial pressure (bar)	2			
CO ₂ partial pressure (bar)	10			
Test duration	21 days			
Corrosion test measurement	Weight loss			

20L UNS N10276 Autoclave

Results: General Corrosion Rate, Cross Section, SEM and XRD

Test Matrix

Experimental Setup

Coupons holder setup for top of line samples

(a)TLC rate is reduced with increasing steel temperature (b) No clear relationship between water condensation rate and TLC

- temperature of 75°C).

- Project leader : Marc Singer

XRD pattern for each sample at various gas temperature

NSTITUTE FOR CORROSION AND MULTIPHASE TECHNOLOGY

Conclusions

• The general top of the line corrosion rate decreased with increasing gas/steel temperature.

• Higher gas and steel temperature led to the formation of more protective and denser FeS layer.

• Mackinawite and cubic FeS were identified as corrosion product layer at the top of the line in most of the conditions tested while troilite was observed at higher temperature (gas temperature of 80°C and steel

• The water condensation rate did not have a strong effect on the corrosion rate.

• A very dense and thin layer was always present on the metal surface. In some conditions, (low temperature, high water condensation rate), a second larger and more porous outer layer was also observed.

References

1. M. Singer, A. Camacho, B. Brown and S. Nesic, "Sour Top of Line Corrosion in The Presence of Acetic Acid," in Corrosion/10, Houston, TX, 2010, paper 10100.

2. M. Singer, S. Nesic, D. Hinkson, Z. Zhang and H. Wang, "CO₂ Top of the Line Corrosion in Presence of Acetic Acid-A Parametric Study," in Corrosion/09, Atlanta, GA, 2009, paper 09292.

3. D. Pugh, S. Asher, J. Cai and W. Sisak, "Top Of Line Corrosion Mechanism for Sour Wet Gas Pipelines," in Corrosion/09, Houston, TX, 2009, paper 09285.

Acknowledgements

 Advisor : Professor Srdjan Nesic & Dr David Young BP, ConocoPhilips, Total, ENI, Chevron, OXY, Saudi Aramco and PTTEP • Ministry of Higher Education Malaysia and Universiti Teknologi MARA Malaysia