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ABSTRACT 

Hydrogen sulfide (H2S) corrosion of mild steel is a serious concern in the oil and gas industry.  

However, H2S corrosion mechanisms, specifically at high partial pressures of H2S (pH2S), have not 

been extensively studied because of experimental difficulties and associated safety issues. The 

current study was conducted under well-controlled conditions at pH2S of 0.05 and 0.096 MPa. The pH 

range used was from pH 3.0 to pH 5.0, at temperatures of 30 and 80˚C, and with rotating cylinder 

speeds of 100 rpm and 1000 rpm. Short-term exposures, lasting between 1.0 and 1.5 hours, were 

used to avoid formation of any protective iron sulfide layers. The experimental results were compared 

with a recent mechanistic model of sour corrosion developed by Zheng, et al. (2014). This model was 

based on corrosion experiments conducted at low pH2S (0.0001 – 10 kPa) and is applicable only to 

conditions where protective iron sulfide layers do not form. The validity of the model at higher pH2S 

was examined, as it was uncertain if the mechanisms identified at lower pH2S were still valid. The 

comparison with the experimental results obtained in the present study indicated a good agreement 

between the model and the measurements. This confirmed that the physico-chemical processes 

underlying H2S corrosion in the absence of protective iron sulfides are very similar across a wide 

range of H2S aqueous concentrations. It also demonstrated that the mechanistic corrosion model was 

reasonable when extrapolating from low to high pH2S. 

Key words: corrosion rate, H2S, modeling  

INTRODUCTION 

The role of hydrogen sulfide (H2S) on aqueous mild steel corrosion has been one of the concerns 

of corrosion researchers since 1940 1–13. Ewing14 and Sardisco, et al., 15 were among the first scholars 

to initiate controlled H2S corrosion experimentation which was later continued by other researchers 
13,16–20. The focus of much of the H2S related studies in the past was on iron sulfide formation and the 

resulting effect on corrosion3,21–23. The vast majority of the available research results come from 

experiments conducted at lower H2S partial pressures (pH2S < 10-2 MPa). Over the past few decades, 
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a significant number of new oil and gas fields are sour, ranging from a few ppm up to 15-20 mol% H2S 

(e.g., the Kashagan Field24). This indicated a growing need for better understanding of H2S corrosion 

mechanisms and more effective prediction tools, particularly at higher pH2S.  

Uncertainties related to modelling of H2S corrosion are particularly pronounced at higher pH2S. 

Under those conditions, limited results are available. Therefore, most of the models developed so far 

are based on lower pH2S. Despite the progress in understandings of H2S corrosion 1-35, there is still a 

lack of systematic studies where the parameter space has been explored in an organized way. Again, 

the problem is even more pronounced at higher pH2S where the challenges associated with 

conducting experiments are much bigger.  Corrosion data that have been reported under these 

conditions in the open literature are very few, with widely scattered operating conditions.  

There has been substantial progress in understanding and modeling of H2S-related corrosion 

since the late 90s. In 2009, Sun, et al.,19 proposed a mechanistic H2S model that accounted for iron 

sulfide layer formation. It assumed that the corrosion rate was always under mass transfer control with 

the iron sulfide layer being dominant, and it did not take into account the kinetics of electrochemical 

reactions. While this has been proven to be an overly restrictive assumption, the work conducted by 

Sun, et al.,19 provided a foundation for further investigation and modeling of H2S corrosion 

mechanisms in a more systematic way.   

In 2014 and 2015, Zheng, et al., 20,25 developed a mechanistic model of pure H2S and mixed 

CO2/H2S corrosion of mild steel that considered both the electrochemical and mass transfer controlled 

reactions. This model calculates the corrosion rate in the absence of iron sulfide layers. The authors 

were able to demonstrate that when mild steel was exposed to aqueous H2S, the direct reduction of 

H2S occurs on the steel surface as an additional hydrogen evolution reaction. The model was 

validated with experimental data from corrosion experiments conducted in an aqueous solution 

sparged with H2S at partial pressures from 10-7 to 10-2 MPa. 20,25 

The focus of the current study is on the higher pH2S and the corrosion mechanisms of mild steel 

at those conditions. One of the key hypotheses is that the mechanistic model 20,25 based on low pH2S 

data, will perform at higher pH2S. To prove this, one needs reliable experimental data at higher pH2S, 

thus a number of experimental studies were found in the available open literature. The choice of 

literature data was made according the following criteria: the corrosion study had to be 

comprehensively reported, including a proper description of the experimental set-up, procedures and 

data analysis. For example studies that failed to describe the water chemistry or some other key 

experimental parameters were not considered, even if the corrosion results were reported.  

Furthermore, only the experimental data that were obtained in short exposures, prior to formation of 

protective iron sulfide corrosion product layers were considered, in order to compare with the model 
20,25. 
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The results of this exercise is given in Figure 1(a), which shows parity plots where all of the 

selected experimental corrosion rate data from the open literature at high pH2S are plotted vs. the 

predictions made by the model. The solid lines in Figure 1 represent a perfect agreement, while the 

dashed lines represent a factor of two difference between the measured and predicted values. The 

different colors of the symbols indicate data from different experimental conditions and/or different 

studies.  

In this comparison, it appears that the model over-predicts the majority of the measured 

corrosion rates. However, before drawing any conclusions about the performance of the model, it is 

essential to reconfirm that the experimental data were consistent and suitable for the present 

exercise. All the outliers, shown on the parity plot in Figure 1(a), were generated in a single 

experimental study by Omar, et al.24. The authors presented time series from long term experiments, 

hence only the data points reported at time “zero” were used here. After analyzing the data of Omar, 

et al.24  it seems likely that an iron sulfide layer had formed on the specimens’ surface prior to that first 

reported corrosion rate measurement. The challenge the authors faced was in the fast kinetics of iron 

sulfide formation reactions in high H2S containing environments26. They reported lower corrosion rates 

for higher pH2S and pCO2 (as listed in TABLE 1) which can only happen if protective iron carbonate 

and/or iron sulfide layers formed. Consequently, these data points were eliminated from the present 

study.  

The reduced number of data points collected at high pH2S now appears to be within a factor of 

two of the model predictions, as shown in Figure 1(b). The remaining eight data points came from 

three different high pH2S corrosion studies, with widely different conditions and with no additional 

information on underlying corrosion mechanisms. This illustrates that there is a clear lack of reliable, 

systematically collected, coherent corrosion data from high pH2S experiments, based on sound 

electrochemical measurements.  Therefore, the present study is meant to fill this gap, and provide a 

solid base for verification of mechanisms and models for mild steel corrosion in high pH2S 

environments. 
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TABLE 1 

 Summary of Results 

EXPERIMENTAL METHOD AND SET-UP 

Experiments were conducted in a glass cell (see Figure 2), which was filled with 2 liters of 

deionized water and 60.6 g NaCl to obtain a 3.0 wt% solution. The solution was deoxygenated by 

purging with N2 for 3 hours and was then saturated with H2S by continuously purging the solution with 

H2S gas throughout the remainder of the experiment. The gas outlet was scrubbed using a 5 M 

solution of sodium hydroxide (NaOH) and a series of dry carbon scrubbers. The solution pH was 

adjusted to the desired value by addition of a deoxygenated hydrochloric acid (HCl) or a NaOH 

 
Test Conditions 

Reported 
Corrosion 

Rate 
 mm/y 

Predicted  
Corrosion 

Rate  mm/y 

 
Reference  

 
Legend 

1 MPa H2S; 0.33  MPa CO2;   
pH 3.1;  1, 3 and 5  m/s; 80˚C 1 to 10 19 to 21 Omar et al., 24 

b 

1 MPa H2S; 0.33 MPa CO2;  
pH 3.2;  1, 3 and 5  m/s; 25˚C 

2 to 3 5 to 6 Omar et al.,24  
c 

3 MPa H2S; 1 MPa CO2;  
pH 3.0;  1, 3 and 5 m/s; 80˚C 

0.8 to 2 27 to 28 Omar et al., 24 
a 

0.14 MPa H2S; 0.06  MPa CO2;  
pH 4.5; 1 m/s; 60˚C 

5.5 3.8 
Kvarekval  et al., 27 d 

0.088 MPa H2S; pH 4.2; 50˚C 3.7 2.4 
Abayarathna et al., 
28 

e 

0.069 MPa H2S; pH 4.2; 70˚C 5.1 3.9 
Abayarathna et al., 
28 

e 

0.03 MPa H2S; pH 4.2; 90˚C 6.9 6.3 
Abayarathna et al., 
28 

e 

0.044 MPa H2S; 0.044 MPa CO2;  
pH 4.2; 50˚C 

3.8 2.3 
Abayarathna et al., 
28 

e 

0.034 MPa H2S; 0.034 MPa CO2;  
pH 4.2; 70˚C 

6.4 3.6 
Abayarathna et al., 
28 

e 

0.015 MPa H2S; 0.015 MPa CO2;  
pH 4.2; 90˚C 

6.5 5.8 
Abayarathna et al., 
28 

e 

1.6 MPa H2S; 90˚C 8 12.8 Liu et al., 29 
f 
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solution. It was deemed that equilibrium in the solution was reached after approximately 1 hour after 

the introduction of H2S gas into the glass cell. 

A cylindrical API1 5L X65 steel specimen was sequentially polished with 150, 400, and 600 grit 

sand paper, rinsed with isopropyl alcohol in an ultrasonic bath, and air dried. It was then mounted 

onto the RCE rotator and inserted into the glass cell for electrochemical measurements. The rotator 

was set to the desired rotational speed and the corrosion measurements were initiated.  

Electrochemical measurements were conducted using a three electrode setup with a mild steel 

rotating cylinder (RCE) as the working electrode (WE). A platinum mesh plate was used as the 

counter electrode (CE). An external saturated silver/silver chloride (Ag/AgCl) reference electrode (RE) 

was connected using a KCl salt bridge via a Luggin capillary. Open circuit potential (OCP), 

measurements were done first to ensure that a reasonably stable state was reached, where the OCP 

drift was less than 1 mV per min and the magnitude of the OCP fluctuation was less than 1 mV (this 

occurred typically within the first 5 min). The OCP measurements were immediately followed by 

electrochemical impedance spectroscopy (EIS), in order to determine the solution resistance (IR 

drop). Then, the linear polarization resistance (LPR) measurements were conducted in order to 

estimate the polarization resistance (RP) and the corrosion rate. Finally, potentiodynamic 

measurements were conducted by first sweeping the potential from the OCP in the cathodic direction. 

After the OCP stabilized (usually within 10  min) the anodic potential sweep was performed.  

During the LPR measurements, the WE was polarized ±5 mV from the OCP in order to 

determine the (RP), using a scan rate of 0.125 mV/s. The measured RP was corrected for the solution 

resistance that was obtained from the high frequency portion of the EIS spectrum (frequency range 

around 5 kHz). The linear polarization constant, B = 23 mV/decade, was used in the current work 

based on comparison of LPR measurements with weight loss 20. Potentiodynamic sweeps were 

conducted at a rate of 5 mV/s. While this is generally considered a very fast sweep rate, where 

transient effects could interfere, it was an imperative to complete the measurements in the shortest 

possible time, in order to avoid formation of protective iron sulfide layers. Also, the fast sweep rate 

minimized the atomic hydrogen diffusion in to the steel, which allowed the surface to recover to the 

OCP in a shorter period. In order to confirm that the fast sweep rate was acceptable, the 

potentiodynamic sweeps obtained at a low pH and low temperature (where formation of iron sulfide 

was slower) were compared by using sweep rates of 1 mV/s and 5 mV/s, with no substantial 

difference seen. Each potentiodynamic sweep was corrected for the ohmic drop due to solution 

resistance. The experiments were conducted at three different pH, two different velocities and 

temperatures as summarized in TABLE 2. 

.   
                                                 
1 American Petroleum Institute (API), 1220 l St. N.W. Washington, DC 20005-4070. 
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CONCLUSIONS 

 There is a lack of reliable, systematically collected, coherent corrosion data from 

experiments conducted at high pH2S, based on sound electrochemical measurements. 

The present study was conducted to close this gap. 

 It was found that the physico-chemical processes underlying H2S corrosion in the 

absence of protective iron sulfides are very similar across a wide range of pH2S. 

 The existence of the so called “double wave” in the cathodic sweeps arises from the two 

independent cathodic reactions: H+ reduction and direct H2S reduction.  

 It was demonstrated that the calculated corrosion rates based on the mechanistic 

corrosion model of Zheng, et al., 20,25are in reasonable agreement with the experimental 

data for a broad range of H2S concentrations (up to 0.1 MPa partial pressure of H2S). 
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