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ABSTRACT 
 
Top of the Line Corrosion (TLC) is now known to be the main mode of failure in incidents associated 
with a number of wet gas pipelines operated all over the world. TLC is nevertheless a relatively recent 
phenomenon in a sense that its existence was only acknowledged about 10 to 15 years ago. A number 
of research activities have been carried out since then and although there are still a number of 
uncertainties, the main aspects of the mechanism involved in TLC have been identified. This paper 
presents a review of the laboratory work performed on the topic with a detailed list and analysis of the 
different experimental setups proposed for its study. The latest findings in the specific influence of each 
controlling parameter (water condensation rate, organic acids, hydrogen sulfide, flow regime, etc) are 
also laid out. A number of TLC predicting tools (some empirical, some mechanistic) have also been 
developed based on the current understanding and their value and limitations are discussed as well. 
 

INTRODUCTION 
 
Since the drilling and completion of the first oil well, the oil and gas industry has had to battle many 
types of corrosion, some more serious than others. Top of the line corrosion (TLC) is one of these types 
and probably one of the most recent to be discovered, as it was first identified only in the 1990s. At that 
time, it was regarded as a curiosity more than a real problem. However, TLC has been progressively 
recognized as a major cause of pipeline failure all over the world and has become the focus of intense 
research relating to its mechanism, prevention and prediction.  
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The transportation of fluid is critical in the oil and gas industry. When the fluid comes directly from the 
oil well, it is usually unprocessed and consists of multiple phases, i.e., a mixture of oil, solids, gas and 
water (as brine). The presence of water can lead to considerable corrosion problems on the internal 
walls of the pipelines, though the use of corrosion inhibitors dissolved in the oil or water phase can 
usually provide some protection if these are applied effectively.  
 
The phenomena of interest in this study are related to the transportation of gas containing condensable 
liquids (“wet gas”) and, more precisely, the corrosion issues that occur when significant heat exchange 
is present between the pipelines and the surroundings (frozen land, deep-sea water, etc.). The 
unprocessed water and hydrocarbon vapor flowing through the pipe have the potential to condense 
particular components on the cold walls, one of them being water, forming a thin film and/or droplets of 
liquid. The condensed water can contain corrosive species such as organic acids and dissolved 
corrosive gases (e.g. carbon dioxide or hydrogen sulfide). Typical carbon steels can corrode rapidly 
under these conditions, which could lead to a loss of pipeline integrity and potential failure. The use of 
standard corrosion inhibitors to combat TLC is usually inefficient since the inhibitors themselves are 
non-volatile and typically do not provide any protection to the top of the pipeline, at least in stratified 
flow regime.  
 
The objective of the paper is to draw a comprehensive review of the current understanding of TLC 
mechanisms obtained through laboratory experience. The advantages/drawbacks of a number of 
experimental “TLC” setups are reviewed together with the main conclusions of the related studies. 
 

MECHANISM 
 
TLC is a complex phenomenon in which several processes interact: 
  

 Fluid mechanics:  Knowing the location and velocity of the gas and liquid phases on the cross 
section of the pipe is the first step in determining whether TLC is an issue.  

 Heat and mass transfer: TLC is the consequence of water vapor condensation on the pipe wall 
which is driven by a gradient of temperature across the pipe wall. 

 Chemistry: Corrosive gases dissolve in the condensed water and generate a number of species, 
some of them acidic, which can react to form corrosion products. 

 Electrochemistry: The acidity of the condensed water drives the corrosion process. 

Flow regime 
 
The issue of TLC occurs only when specific flow conditions are met. Probably the most important one is 
the flow regime. The transportation of fluids coming from the well involves a mixture of gas (containing 
water vapor, hydrocarbon vapors, carbon dioxide, and hydrogen sulfide), liquid hydrocarbon and water. 
At the temperatures and pressures encountered in flowline conditions, the presence of liquid water in 
contact with the pipe steel is responsible for corrosion. As mentioned earlier, the injection of corrosion 
inhibitor, often water soluble, does provide effective protection against metal loss. Consequently, any 
parts of the pipe surface wetted - even intermittently - by the inhibited water, should benefit from some 
level of protection. Some flow conditions lead to this kind of scenario while some others do not. The 
most common type of flow encountered in the transport of unprocessed hydrocarbon fluids is gas-oil-
water three-phase flow (oil here meaning liquid hydrocarbons). Some fields may generate little or no 
liquid hydrocarbons but they all produce non-condensable gas (light hydrocarbons, CO2, etc.) and 
water vapor (saturated water vapor in most cases). Three major flow regimes may be encountered and 
their characteristics and corresponding flow conditions are described below:  

 
- Stratified flow (wavy or smooth): At low gas and liquid flow rates, the gas and liquid phases are 

clearly segregated and the gas-liquid interface is smooth. With increased liquid and gas velocity, 
waves can be initiated at the gas-liquid interface.  
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reason to believe that any inhibited water present at the bottom of the line could reach the top of the 
pipe, and TLC can therefore occur in an un-mitigated environment.  
 
The top part of the pipeline will corrode if liquid water comes into contact with the steel surface. This is 
why a significant amount of water vapor condensation is required for there to be any significant amount 
of corrosion.  In practical terms, the main factor affecting the amount of water that can condense is the 
gas temperature; the hotter the fluid is, the higher is the saturated water vapor pressure. However, 
other parameters do influence the process. The rate of water condensation is dependent on not just the 
amount of water vapor carried in the gas phase but also on the gradient of temperature with respect to 
the outside environment. Thermal insulation or burial of the pipeline is particularly important, as it will 
limit the heat transfer between the pipeline and the outside environment and consequently limit the rate 
of water condensation. Finally, the nature of the outside environment also plays a role, as more heat 
can be “extracted” from the produced fluid if the pipe is in contact with flowing water (river or maritime 
current) as opposed to air or soil. 
 
In summary, several key factors can be identified in assessing whether a pipeline will suffer from 
significant water condensation: 

 The water vapor pressure of the produced fluid 
 The gradient of temperature between the produced fluid and the outside environment 
 The nature of the outside environment (air, sea or river) 
 The extent of thermal insulation or pipeline burial 

Water chemistry of H2O/CO2/H2S system 
 
Understanding the water chemistry is a necessary step in assessing the severity of a corrosion attack. 
The basic principles of the H2O/CO2/H2S system have been presented elsewhere2 and are not specific 
to TLC. Organic acids are also often present in produced fluids and the most common and abundant 
among them is acetic acid3. In addition, the presence of large concentrations of H2S in a growing 
number of fields is becoming one of the most pressing matters in term of corrosion prediction in the oil 
and gas industry4. The understanding of H2S corrosion mechanisms is clearly not as advanced as that 
of CO2, even though much effort has already been made in this direction5. Although H2S gas is about 
three times more soluble in water than CO2 gas (at 25°C, 1.02 SH

solK mol/L/bar and 03.02 CO
solK  

mol/L/bar), the acidity constant for H2S is about four times lower than for carbonic acid (at 25°C, 
8103.92 SH

aK mol/L and 7106.432 COH
aK mol/L). Consequently, CO2 and H2S gases   do approximately 

affect the solution pH to the same extent.  
 
In the field, typical CO2 contents range from 0.1 to 10 mol% (although much higher concentrations have 
been reported). In terms of H2S, gas contents ranging from 5 to 5000 ppm are also common. 
Considering that the production pressures and temperatures in flowlines typically range from 30 to 200 
bars and from 5 to 100°C, respectively, the pH of condensed water should vary between 3 and 
4.5.6However the presence of formation water and the injection of a strong base (a common corrosion 
mitigation method) result in significantly higher in-situ pH of the bulk aqueous phase at the bottom of 
the line (practically between 6 and 8).7    
 
The only difference between the chemical composition of the water at the bottom of the line (brine) and 
the water at the top is the mineral content, which is nil in freshly condensed water. In addition, any base 
injected in-line as part of a corrosion mitigation method would typically have no effect at the top of the 
line. Determining the pH of the condensed water requires knowing the partial pressure of acetic acid, in 
addition to the CO2 and H2S content. The typical pH value of freshly condensed water is consequently 
quite low and varies between 3 and 4.5. However, as the corrosion process takes place, iron ions are 
released in solution as acidity is consumed, which rapidly increases the pH; especially when the rate of 
condensed water renewal is low. 
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Corrosion process 
 
CO2 corrosion has been extensively studied by many different investigators.8-15 Consequently, the main 
corrosion mechanisms for this system are now well defined and have been incorporated into prediction 
models. 16,17   
It should be noted that the acetic acid and, to some degree, the carbonic acid direct reduction reactions 
are currently subject to debate regarding whether or not they actually occur to any significant degree in 
the environment considered. Following the pathway of direct reduction, the concentration of acetic acid 
is directly linked to the corrosion rate, as more acid leads to a higher steel dissolution rate. Considering 
the buffering effect, the acetic acid only acts as a provider of hydrogen ions and the corrosion rate will 
increase until it eventually falls under charge transfer control. Distinguishing between the two pathways 
is not an easy task, but recent work seems to favor the buffering effect over the direction reduction.12,13 
It is understood that the presence of acetic acid leads to a considerable increase in the corrosion 
rate.3,11  

Corrosion product layer 
 
As a direct product of the dissolution of steel, the concentration of Fe2+ ions can increase in solution 
depending on the flow conditions. In a top of the line scenario, the Fe2+ concentration can quickly reach 
a relatively high level, especially if the rate of water condensation is slow. In CO2/H2S/H2O systems, two 
main families of corrosion product can form: iron carbonate (FeCO3) and iron sulfide (FexSy).

  

Precipitation reactions have been proposed to describe FeS formation and dissolution.18 Other authors 
19-21 have suggested different pathway: a so called “direct” reaction where it is assumed that iron 
dissolution does not occur; rather, a fast oxidation of solid iron transforms it directly into solid iron 
sulfide attached to the steel surface. The mechanism of this reaction is still under investigation, 
including the role of various species in the formation of the different types of iron sulfide compounds. 
 

LABORATORY EXPERIENCE 
 
The present section presents a review of the main laboratory studies related to TLC published over the 
years. It is divided into three main parts, whether the study focuses on CO2 dominated TLC, H2S 
dominated TLC or chemical inhibition of TLC. 

Experimental work on CO2 TLC 
 
In the past twenty years, TLC has been the subject of intensive research. As early as in 1991, Olsen 
proposed the first high-pressure autoclave especially designed for the study of TLC.22 The lid of the 
autoclave was cooled with water and clamped with weight loss (WL) flushed samples (Figure 2). The 
partial pressure of CO2 could be raised up to 5 bars. The author conducted a systematic experimental 
study on parameters influencing TLC in sweet conditions. The formation of a protective FeCO3 
corrosion product layer was suggested to play a key role. The precipitation of FeCO3 only occurred 
when the saturation level was above the value of one. High levels of super-saturation in FeCO3 could 
lead to very dense and protective FeCO3, as was the case at a high temperature (70°C) and a low 
condensation rate. The authors also found that the competition between the rate of iron dissolution (i.e., 
the increase of Fe2+ ions in the aqueous phase) and the water condensation rate controlled the extent 
of FeCO3 film formation. At a high condensation rate, the saturation in FeCO3 is more difficult to obtain 
due to the rate of fresh water renewal.  
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Camacho38 presented a series of short-term (2 to 4 days long) experiments carried out in a 4”ID flow 
loop. The tests were performed at 3 bars total pressure, at 70°C and at a gas velocity of 5m/s ensuring 
stratified flow. The condensation rate was kept constant at 0.25 mL/m2/s. The presence of small 
quantities of H2S (up to 0.13 bar) led to a strong decrease in the general corrosion rate compared to its 
pure CO2 counterpart. The corrosion was strictly uniform and did not seem to be greatly affected by the 
range of CO2/H2S ratio tested. An FeS layer was always found to be the predominant corrosion product 
present on the carbon steel surface. As is customary in TLC testing, the short duration of the 
experiment made it difficult to extrapolate laboratory corrosion rates to field reality. 
 
Nyborg33 presented a series of experiments in a 2”ID flow loop using carbon steel tubes as corrosion 
samples. The tests were conducted at 25°C, with 0.02 bar of H2S and 10 bars of CO2 with 300 ppm of 
acetic acid. The experiments lasted for more than 30 days at very low condensation rates (lower than 
0.006 mL/m2/s). The corrosion rate was very stable during the entire test duration. A porous and fluffy 
FeS film was found on top of a more protective FeCO3 layer covering the metal surface. It was 
proposed that dissolved H2S acted as a “sink for ferrous ions” by promptly forming an un-protective FeS 
layer and enabling the corrosion to continue, albeit at a low rate (0.1 mm/year). 
 
Pugh39 performed experiments in an autoclave equipped with TLC capabilities. The aim was to simulate 
specific field conditions where TLC was observed. The tests were conducted at 25 and 55°C and at 
condensation rates of 0.002 and 0.1 ml/m2/s respectively. The gas phase consisted of 2.4% CO2 and 
1.0% H2S and the tests were performed over a 6 to 10 weeks period. The results showed that the 
corrosion rate was higher at a lower temperature and lower condensation rate (25°C and 0.002 ml/m2/s) 
than at a higher temperature and higher condensation rate (55°C and 0.1 ml/m2/s). In both cases, a 
mackinawite film formed on the metal surface but had different characteristics depending on the 
temperature; at 25°C, the film was fluffy, porous, crystalline with 500 nm grains and un-protective; at 
55°C, the film was denser, crystalline with 10 microns grains and protective. The presence of organic 
acid increased the general corrosion rate and promoted localized corrosion, especially where the FeS 
film was protective.  
 
Singer40 continued Camacho’s work38 and conducted a parametric study in a 4” ID flow loop. The partial 
pressure of H2S (up to 0.13 bar) and the acid acetic concentration (up to 1000 ppm) were studied in a 
series of 21-day experiments. In the presence of H2S, the presence of acetic acid seemed to affect the 
integrity of the FeS film and trigger the occurrence of localized corrosion initiation. 
 
In 2011, Singer et al. conducted an experimental study performed in an innovative high pressure 
autoclave41. The 20L autoclave made of alloy C-276 (UNSa N10276) was specially manufactured to 
equipped with an internal cooling system and a sample holder plate. The design of the sample holder 
enabled the study of the effect of the condensation rate in one single test. This was done by “hanging” 
some of the steel samples in the gas phase but a distance (15 cm) away from the cooled plate. 
Experiments were conducted under high H2S and CO2 partial pressures (4 and 10 bars, respectively) 
and for an exposure time of 3 weeks. Mackinawite, cubic FeS and troilite were identified as 
components of the corrosion product layer, which seemed to be comprised of two distinct layers: a thin 
and dense inner layer and a porous and thick outer layer. It was also shown that higher uniform 
corrosion rates could be expected at lower gas temperatures and that the water condensation rate had 
little effect on the corrosion results. 
 
Although no firm conclusion can be made at this stage, some important characteristics of sour TLC 
have been proposed: 

 Sour TLC does not seem to be as serious or as common as sweet, 
 The condensation rate may not be the main controlling parameter, as it is in sweet TLC, 

                                                 
a Unified Numbering System for Metals and Alloys (UNS) 
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necessary47. The commonly accepted approach developed to evaluate the total heat flux through a 
number of randomly sized droplets is to consider a distribution function48. Phase change and the 
presence of non-condensable gases are also important parameters to take into account.  

 
In 2007, Zhang49 adapted the dropwise condensation theory to a pipeline situation in which the 
presence of droplets of condensed water was clearly identified. It is important to mention that dropwise 
condensation is believed to happen at the 11 to 1 o’clock position in the pipeline while the remainder of 
the surface is more likely to be subject to filmwise condensation. Zhang added a mass balance of the 
water in order to calculate the condensation rate:  

   )()( g
isat

g
bsat

gT

w
gg

g
i

g
bgg TPTP

MP

M
xxWCR   Eq (2) 

With: WCR: Water condensation rate (kg/m2/s) 
 βg: Mass transfer coefficient in the gas boundary layer (m/s) 

 xb
g: Mass fraction of water vapor in the bulk gas flow (kgv/kgg) 

 xi
g: Mass fraction of water vapor at the gas-liquid interface (kgv/kgg) 

 ρg : Density of gas (kgg/m
3) 

 Mw and Mg: Molecular weight of the water and the gas mixture (g/mol) 
 PT: Total pressure (Pa) 
 Psat: Saturation pressure as a function of temperature (Pa) 
 
Zhang could then calculate the condensation rate by solving the equations above using an iterative 
method. This new approach is also able to take into account the effect of non-condensable gas.  
 
In summary, the dropwise condensation approach calculates a local WCR, while the water dropout 
approach calculates an overall water accumulation rate (or a net water condensation rate). The 
dropwise condensation approach likewise only considers the water that condenses from the vapor 
phase. Since the calculations are made locally at the surface of the pipe, the evaporation of water from 
the bulk is not taken into account. This is why dropwise condensation can calculate greater WCRs than 
the water dropout approach. 
 
A significant difference between the two approaches should only exist when there is a considerable 
amount of produced water in the pipe. The heat carried in the water is much larger than in the gas and 
it will prevent the fluid from rapidly cooling, acting as a constant source of water vapor. If there is little 
liquid water produced in the line, the fluid will cool down rapidly and the influence of evaporation will be 
reduced. 

Corrosion modeling in dewing conditions 
 

 Empirical and semi empirical modeling of TLC 

The first attempt to model TLC was made twenty years ago by Olsen et al.22 The author stated that the 
extent of the corrosion attack was ultimately controlled by the competition between the corrosion and 
the condensation rates which in turn controlled the FeCO3 saturation level.  
 
DeWaard et al.50 modified his widely used full pipe flow empirical equation in order to introduce a 
correcting TLC factor: Fcond=0.1. This factor was to be multiplied to the original corrosion rate for 
condensation rates below an experimentally determined critical rate of 0.25 mL/m2/s. The correlation 
proposed by DeWaard gives an extremely conservative prediction. It is listed below: 
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With  pCO2: Partial pressure of CO2 (bar) 

Tk: Temperature (K) 
Fcond: 0.1 
CR: Corrosion rate (mm/year) 
 

This competition between scale formation and the condensation rate was developed further by Pots et 
al.23 in 2000. The so called “supersaturation model” was based on the calculation of the concentration 
of iron at saturation under film-forming conditions. The accurate prediction of the chemistry in the 
condensed water and especially of the WCR was underlined by the author. The concentration of Fe2+ 
was determined so that the corrosion rate and the precipitation rate would balance each other. The 
expression of the corrosion rate CR is shown in equation Eq (4):  
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With CR: Corrosion rate (mm/y) 
 WCR: Water condensation rate (g/m2/s) 
 ρw: Water density (g/m3) 
 [Fe2+]supersat: Iron concentration at FeCO3 saturation (mol/L) 
 MFe: Iron molecular weight (55.847 g/mol) 
 ρcarbonsteel: Density of a typical carbon steel (7860000 g/m3) 
 
Nyborg et al.52 developed a new empirical equation for TLC prediction which takes into account the iron 
carbonate solubility, the water condensation rate and a temperature dependent supersaturation factor, 
developed experimentally. The empirical equation is displayed below and is valid only for low acetic 
acid content (<0.001 Mol/L), low to medium carbon dioxide partial pressure (<3 bars) and no H2S: 
 

  )09.05.12(004.0 2 TFeWCRCR   Eq (5) 
 
With  CR: Corrosion rate (mm/y) 
 WCR: Water condensation rate (g/m2/s),  
 [Fe2+]: Concentration of iron ions at FeCO3 saturation (ppmw) 
 T: Temperature (°C) 
 
Nyborg notes that the solubility of iron ion is a function of temperature, total pressure, CO2 partial 
pressure and glycol concentration, and calculates this with an in-house pH and solubility program. 
Although no detail is provided on how the condensation rate is calculated, Nyborg stresses the 
importance of predicting an accurate condensation rate, as it will have a much more pronounced effect 
on TLC than, for example, the CO2 partial pressure 
 

 Mechanistic modeling of top of the line corrosion 

As detailed below, a fair amount of research and modeling work has been done on TLC. It should be 
noted that these works pertain almost exclusively to sweet (CO2 dominated) TLC and that no serious 
attempt to model sour (H2S dominated) TLC has been performed to date. 
 
In 2002, Vitse et al.24-25 developed a semi-empirical corrosion model adapted to a TLC scenario. This 
corrosion model constituted a considerable breakthrough in the understanding of the mechanisms 
involved in TLC. A baseline "film free" corrosion rate was determined using the electrochemical model 
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developed by Nesic et al. in 199616. However, once the value of the condensation rate was obtained 
(through a filmwise condensation model also described by the author), Vitse conducted a Fe2+ flux 
balance in a controlled volume, taking into account the fluxes of Fe2+ created by corrosion, removed by 
FeCO3 precipitation and transported by condensed water film convection. Vitse modified his corrosion 
equation in order to include the influence of corrosion product film on the corrosion rate once the 
saturation in FeCO3 is reached. It was done by introducing an empirical correcting factor K which would 
represent the covering effect of the FeCO3 film, underneath which no corrosion would occur. This factor 
was determined experimentally but was correlated with the scaling tendency (ratio of corrosion and 
precipitation rate). The equation used in the Fe2+ flux balance is displayed: 
 

    


 2
2

)1(
1

FeWCRPRKCRK
dt

Fed


Eq (6) 

With Fe2+: Concentration of iron ion (mol/m3) 
 t: Time (s) 
 CR: Corrosion rate (mol/m3/s) 
 PR: Precipitation rate (mol/m3/s) 
 WCR: Water condensation rate (m3/m2/s) 
 δ: Liquid film thickness (m) 
 K: Covering factor 
 
Okafor et al.53 proposed through his experimental study a mechanism for corrosion under liquid droplets 
containing acetic acid. Okafor linked the initiation of localized corrosion with the presence of protected 
and non-protected regions under drop-wise condensation. He assumed the formation of a galvanic cell 
between the film-free regions, with those regions covered by a FeCO3 film. It was the first attempt to 
differentiate general and localized corrosion at the top of the line. 
 
In 2007, Zhang et al.49 published the first fully mechanistic approach on TLC modeling. The model 
covers the three main processes involved in TLC phenomena: dropwise condensation, chemistry in the 
condensed water and corrosion at the steel surface. Since the condensation approach is drop-wise, the 
model is valid only for the 11-1 o’clock position in a pipeline. The chemistry of the condensed liquid is 
established through standard chemical and thermodynamic equations6. The corrosion model is adapted 
from the mechanistic CO2 corrosion approach developed by Nordsveen et al.17 and Nesic et al.54-55. 
Zhang stated that, from a statistical point of view, every point on the metal surface has the same 
probability of being covered by liquid droplets and, consequently, the entire surface is subject to 
uniform corrosion. This simplifies the mathematical approach from a three-dimensional situation (semi-
hemispherical droplet) to a one-dimensional situation (liquid layer). The droplet growth is simulated by 
an increase in the liquid film with time until it reaches a calculated maximum size where the droplet 
disappears (falls or slides). The calculation then restarts with a minimum film thickness (corresponding 
to the minimum droplet size), and the cycle is carried out until the corrosion process reaches a steady 
state. The corrosion module includes chemical reactions, transport of species to and away from the 
metal surface, and the electrochemical reactions at the metal surface. The main equations used are 
described in details in the original publication49.  
 
Remita et al.56 also extended the work proposed by Vitse et al.25 and developed a model for CO2 
corrosion under a thin liquid film. It follows a mechanistic approach for the chemical and 
electrochemical side of the phenomena but assumes a homogeneous composition within the film. Like 
Vitse, Remita introduces a covering factor θ in order to take into account the effect of FeCO3 film 
formation, this factor being difficult to obtain.  
 
Overall guidelines on sweet and sour TLC prediction were proposed by Asher et al. in 2011.57 The 
importance of modeling the chemistry and the physics of the corrosion process was stressed. The 
corrosion model is based on the concept that, at steady state, the corrosion flux (flux of iron ions away 
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from the surface) is equal to the FeCO3 precipitation flux (i.e., flux of iron ions required to form the 
corrosion product layer). No specifics were given on the algorithm or equations used.  

Modeling of localized corrosion 
 
Even though much progress has been made over the years in the understanding of TLC mechanisms, 
none of the models proposed thus far tackles the occurrence and prediction of localized corrosion. In 
2008, Amri58 performed experiments in an effort to relate pit growth and environmental conditions, 
especially in the presence of acetic acid. It was found that the growth of the pit was related to the 
depletion of the acetic acid concentration inside the pit. It was also stated that the growth should stop 
once the pit reaches a certain depth. Many of the observations made by the author were typical of a 
TLC scenario and were put forward to explain TLC stabilization. Consequently, this study constituted 
the first attempt to adapt the localized corrosion process to TLC. 
 

CONCLUSIONS 
 
A great deal of research has been performed in the past twenty years to gain a better understanding of 
TLC. However, compared to other corrosion mechanisms commonly found in oil and gas production, 
this research is in its infancy and further work is required in a number of specific areas. Sweet TLC is 
much better understood than sour TLC; however in both cases the prediction of localized corrosion and 
the ability to accurately reflect field reality experimentally are the main gaps to be able to accurately 
model TLC. 
 
As described in this paper, corrosion inhibitors are commonly deployed in gas pipelines to mitigate TLC. 
These corrosion inhibitors are routinely selected based on laboratory evaluations. However, in these 
tests the corrosion inhibitor only has to travel a small distance from the bulk fluid to the test sample 
(probe or weight loss coupon) to provide protection. In reality, TLC inhibitors are required to be 
transported many kilometers in the gas phase in a pipeline and be present at the location where the 
water condenses. A pipeline will also pass through areas of varying topography and will also consist of 
several bends that will impact inhibitor transport. Therefore, further research is needed to determine if 
inhibitors can be transported long distances in a gas pipeline and establish if they are present in a 
pipeline at the point where condensation occurs. 
 
Many laboratory techniques are available for assessing the efficacy of corrosion inhibitors in preventing 
TLC. However, at present there is no industry standard (ASTMb recommended practice or NACE 
Standard) that provides guidelines for TLC inhibitor testing. In order to standardize inhibitor testing for 
TLC, it is recommended that an approved recommended practice document is prepared and approved 
by a relevant professional body. 
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