

An Experimental Investigation on the Effect of Salt Concentration on **Uniform CO₂ Corrosion**

Combination of dissolved salts with corrosive gases (CO₂ and H_2S) in produced water creates a complex corrosive environment for metallic equipment used throughout the production process. Corrosion prediction models must account for the influence of high salt concentrations on the corrosion rate of exposed equipment.

Objectives

- Study the effect of salt concentration on the rate of uniform CO₂ corrosion in a wide range of salt concentration (0 to 20 wt.%).
- Study the effect of salt concentration on the mechanism of the corrosion process (anodic and cathodic reactions).

Novelty

- •Covers a wide range of salinity (0 to 20 wt.% NaCl), while most research have been conducted between 0.1 to maximum 3 wt.% NaCI.
- •Mechanistically investigates the effect of salt on the corrosion process (anodic and cathodic reactions, and changes in surface morphology).

because of increase of [Fe²⁺] in the solution

Fazlollah Madani Sani **Institute for Corrosion and Multiphase Technology**

Faraday constant

Results and Discussion

INSTITUTE FOR CORROSION AND MULTIPHASE TECHNOLOGY

 $(FeOH)^+ + H^+ \rightleftharpoons Fe^{2+} + H_2O$

fm874012@ohio.edu