

Investigating the Effect of H₂S and Corrosion Inhibitor on the Corrosion of Mild Steel under High Pressure CO₂ Conditions

Yoon-Seok Choi, Fernando Farelas, Luciano Paolinelli Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University 342 West State Street Athens, OH 45701 USA

Ahmad Zaki B Abas, Azmi Mohammed Nor, Muhammad Firdaus Suhor Petronas Research SDN. BHD, Selangor Darul Ehsan, Malaysia

ABSTRACT

The effect of H₂S and corrosion inhibitor on the aqueous corrosion behavior of mild steel was evaluated at high CO₂ partial pressure conditions. The experiments were performed in a 7.5 L autoclave with different temperatures (25°C and 80°C) and different H₂S concentrations (1000 ppm_v and 2000 ppm_v) at 12 MPa CO₂. The corrosion rate of steel samples was determined by electrochemical and weight loss measurements. The surface and cross-sectional morphology and the composition of the corrosion product layers were analyzed by using surface analytical techniques (SEM, EDS and XRD). Results showed that the presence of 1000 ppm_v and 2000 ppm_v H₂S decreased the corrosion rate of mild steel compared with pure CO₂ condition. However, the final corrosion rates were still higher than the targeted threshold (< 0.1 mm/y). Surface and cross-sectional analyses revealed the formation of FeS in the presence of H₂S and no localized corrosion rate below 0.1 mm/y in high pressure CO₂ conditions with 2000 ppm_v H₂S.

Key words: Supercritical CO₂, CO₂ corrosion, carbon steel, H₂S, corrosion inhibitor

INTRODUCTION

Over the past decade, there has been increasing interest in the corrosion behavior of carbon steels in supercritical CO_2 conditions. Unlike the case of carbon capture and storage (CCS) where small amounts of water are present, the exploitation of fields with high pressures of CO_2 needs to consider the presence of formation water, which presents strong corrosivity. It has been reported that the aqueous corrosion rate of carbon steel at high CO_2 pressures (liquid and supercritical CO_2) without protective FeCO₃ corrosion product layers is very high (>20 mm/y) due to the high concentrations of corrosive species such

^{© 2022} Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

as H⁺ and H₂CO₃.¹⁻⁵ Steels with low Cr contents (i.e., 1% Cr and 3% Cr) have shown no beneficial effect in terms of reducing the corrosion rate to admissible values.⁶ Therefore, controlling corrosion in these cases usually involves the use of corrosion resistant alloys (CRAs) or corrosion inhibitors (CI). Adequate protection of carbon steel was achieved by applying CI in high pressure CO₂ environments.⁶

The presence of small amounts of H₂S in high pressure CO₂ environments greatly alters the corrosion behavior of carbon steel.⁶⁻¹⁰ For example, in the presence of 200 ppm_v H₂S, the corrosion rate of carbon steel was reduced by about 10 times compared to the case of pure CO₂ at 12 MPa CO₂ and 80°C, but corrosion rate was still high and additional protection was required. In addition, the corrosion resistance of low Cr steels (1% Cr and 3% Cr) was worse than that of carbon steel in the above conditions. On the other hand, the addition of an imidazoline based CI in a high pressure CO_2 environment with 200 ppm_y H₂S reduced the corrosion rate of carbon steel below 0.1 mm/y.⁶ The effect of higher H₂S concentrations on corrosion rate of carbon steel with and without inhibitor addition has not been thoroughly studied vet.

The objective of the present study was to increase the understanding of the effect of H₂S and CI on the aqueous corrosion behavior of mild steel under high pressure CO₂ environments with elevated H₂S concentrations up to 2000 ppmy.

EXPERIMENTAL PROCEDURE

The test specimens were machined from UNS K03014⁽¹⁾ carbon steel (CS) with two different geometries: cylindrical type with 5 cm² exposed area for electrochemical measurements, and rectangular type with a size of 1.27 cm × 1.27 cm × 0.254 cm for surface analysis. The detailed chemical composition of the steel is shown elsewhere.^{6,11} The specimens were ground sequentially with 250, 400 and 600-grit silicon carbide paper, rinsed with deionized (DI) water, cleaned with isopropyl alcohol in an ultrasonic bath for 60 seconds, and then dried.

An imidazoline generic CI was selected for evaluation under high pCO₂ environments with H₂S. In this instance, 'imidazoline' is shorthand for tall oil fatty acid (TOFA) imidazoline-based inhibitor. The detailed chemical composition of the CI is found in our previous work.^{6,12}

The corrosion experiments were conducted in a 7.5-liter autoclave (UNS N10276) which contained a CS working electrode, a HPHT Ag/AgCI reference electrode, and a platinum-coated niobium counter electrode. The test solution was a 1 wt.% NaCl aqueous electrolyte prepared using DI water. An impeller was used to stir the solution and to generate flow velocities of about 1 m/s (at 1000 rpm) during the tests.

Corrosion rate and corrosion potential of specimens were evaluated with time by linear polarization resistance (LPR) measurements. After each test, the morphology and compositions of corrosion products were analyzed with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Average corrosion rates were also determined from the weight-loss (WL) method. In addition, attack morphology was examined after corrosion product removal and cleaning of the samples with Clarke's solution.

The details of the experimental procedure for the autoclave setup and corrosion rate measurements are shown in our previous work.^{6,11} Table 1 shows the test conditions used in the present study. All experiments were conducted within 3 days, in order to minimize the effect of the solution contamination due to corrosion reaction over time.

⁽¹⁾ UNS numbers are listed in Metals and Alloys in the Unified Numbering System, published by the Society of Automotive

Engineers (SAE International) and cosponsored by ASTM International. © 2022 Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

Conditions for corrosion tests			
pCO ₂ (MPa)	H ₂ S (ppm _v)	Temperature (°C)	CI (ppm _v)
12	1000	25 and 80	0
12	2000	25 and 80	0
12	2000	25 and 80	400
12	2000	80	200

Table 1 Conditions for corrosion tests

RESULTS AND DISCUSSION

Experiments at 12 MPa CO2 and 25°C

Figure 1 shows LPR and WL corrosion rate data of CS exposed at 12 MPa CO₂ and 25°C with 1000 ppm_v and 2000 ppm_v of H₂S. Corrosion rates seemed to reach stable values after 20 hours of exposure for both H₂S concentrations. It is worth noting that increasing the H₂S concentration led to higher corrosion rates in this experimental condition. WL corrosion rates showed the same trend as the LPR corrosion rates.

Figure 1: Corrosion rate of CS with different H_2S concentrations at 12 MPa CO₂ and 25°C: (a) LPR corrosion rate, (b) WL corrosion rate.

Figure 2 shows the surface morphology and chemical analysis of the corrosion product formed at 12 MPa CO_2 and 25°C with 1000 ppm_v H₂S. The corrosion product was mostly uniform and presented some discontinuous cracks due to dehydration. The chemical analysis performed by EDS at the top of the corrosion product indicated that it consisted mainly of iron and sulfur.

^{© 2022} Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

Figure 2: SEM surface view (a) and EDS analysis (b) of the corrosion product formed at 12 MPa CO_2 and 25°C with 1000 ppm_v H₂S.

Figure 3 displays the SEM cross-sectional view and EDS elemental mapping of the corrosion product layer formed at 12 MPa CO₂ and 25°C with 1000 ppm_v H₂S. It revealed a formation of thin and mainly continuous corrosion product layer (~10 µm) which was not very protective because of the relatively high corrosion rate of ~2 mm/y seen at the end of the experiment. This layer mainly consisted of iron and sulfur indicating the formation of FeS.

Figure 3: SEM cross-sectional view and EDS elemental mapping analysis of the corrosion product formed at 12 MPa CO₂ and 25°C with 1000 ppm_v H₂S.

The corrosion product formed with 2000 ppm_v H₂S (Figure 4) looked more porous than that of the sample exposed to 1000 ppm_v H₂S, and also seemed less adherent and and fragile when corroded samples where manipulated. This would explain the higher corrosion rates measured for the higher concentration of H₂S. Corrosion products containing iron and sulfur as main elements were also observed in the case with 2000 ppm_v H₂S. The cross-sectional analysis (Figure 5) showed a porous layer of ~10 µm thickness composed mainly of iron and sulfur.

Figure 6 shows the surface morphologies of corroded samples after corrosion product removal. For both conditions, surfaces were relatively rough but no significant pits or localized attack was observed and the attack was considered as uniform.

^{© 2022} Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

Figure 4: SEM surface view (a) and EDS analysis (b) of the corrosion product formed at 12 MPa CO_2 and 25°C with 2000 ppm_v H₂S.

Figure 5: SEM cross-sectional view and EDS elemental mapping of the corrosion product formed at 12 MPa CO₂ and 25°C with 2000 ppm_v H₂S.

Figure 6: SEM images of corroded surfaces after corrosion product removal: (a) 12 MPa CO₂, 25°C, 1000 ppm_v H₂S, (b) 12 MPa CO₂, 25°C, 2000 ppm_v H₂S.

^{© 2022} Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

Experiments at 12 MPa CO2 and 80°C

Figure 7 shows LPR and WL corrosion rate data of carbon steel at 12 MPa CO₂ and 80°C with different H₂S concentrations. Corrosion rates seemed to attain stable values after about 20 hours and 35 hours of exposure for 1000 ppm_v and 2000 ppm_v H₂S concentrations, respectively. Similar to the results at 25°C, increasing the H₂S concentration led to higher corrosion rates at 80°C. The initial corrosion rate with 1000 ppm_v H₂S was 10.6 mm/y and slowly decreased with time to 6.4 mm/y after 48 hours. For 2000 ppm_v H₂S, the initial corrosion rate was ~11 mm/y and increased to ~16 mm/y after 9 hours, then it decreased to 8.5 mm/y and remained somewhat stable until the end of the experiment. The corrosion rates obtained by WL measurements showed good agreement with the LPR measurements (average).

Figure 7. Corrosion rate of CS with different H_2S concentrations at 12 MPa CO₂ and 80°C: (a) LPR corrosion rate, (b) WL corrosion rate.

Figure 8 shows the surface morphology and chemical analysis for a sample exposed at 12 MPa CO₂ and 80°C with 1000 ppm_v H₂S. The corrosion product was mostly uniform and free of cracks, and some scattered corrosion products were observed on top of the main corrosion product layer. The EDS analysis showed the presence of iron and sulfur as main constituents.

Figure 8: SEM surface view (a) and EDS analysis (b) of the corrosion product formed at 12 MPa CO_2 and 80°C with 1000 ppm_v H₂S.

© 2022 Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

Figure 9 shows a SEM cross sectional view and EDS elemental mapping of the corrosion product shown in Figure 8. A relatively thick and continuous layer of approximately 40 µm thickness was observed. This layer did not seemed to be well adhered to the steel surface which could explain the high corrosion rate measured at this experimental condition. The elemental mapping showed mainly iron and sulfur suggesting the presence of FeS. Some oxygen close to the steel surface was also observed probably due to the formation of an iron oxide. It is interesting to note that a very thin (few microns) nickel rich layer was detected at the very top of the corrosion product layer. This layer is not believed to have affected the corrosion process and it could have formed from foreign nickel ions provenient from the used Hastelloy autoclave.

Figure 9: SEM Cross-sectional view and EDS elemental mapping of the corrosion product formed at 12 MPa CO₂ 80°C with 1000 ppm_v H₂S.

Figure 10 shows the morphology and chemical analysis of the corrosion product on carbon steel samples exposed at 12 MPa CO₂ and 80°C with 2000 ppm_v H₂S. The corrosion product was mainly uniform with some cracks due to dehydration; and some well defined scattered crystals were observed on top of the corrosion product layer. The EDS analysis showed that both the corrosion product layer and the crystals mainly consisted of iron and sulfur, indicating the formation of FeS.

^{© 2022} Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

The cross-sectional analysis, presented in Figure 11, shows that the corrosion product layer had a thickness ~130 µm including the crystals on top. Both top and bottom parts of the layer showed a porous structure and the corrosion product was poorly adhered to the steel surface, which is in line with the high corrosion rate seen on these samples. The elemental mapping (Figure 11) clearly shows that the layer consisted of iron and sulfur. A complementary XRD analysis (Figure 12) corroborated the presence of FeS (Mackinawite). It is interesting to note that iron carbonate (FeCO₃) was not detected on the surface of samples exposed to both 1000 ppm_v and 2000 ppm_v of H₂S. This would indicate that under the tested conditions, the kinetics of formation of FeS is much faster than that of FeCO₃ regardless of the high used partial pressure of CO₂ (12 MPa).

Figure 13 shows the surface morphologies of samples after corrosion product removal. For both conditions, corroded surfaces were considerably rough but no significant localized damage was found and the attack was considered as uniform.

Figure 10: SEM surface view (a) and EDS analysis (b) of the corrosion product formed at 12 MPa CO_2 and 80°C with 2000 ppm_v H₂S.

^{© 2022} Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

Figure 11: SEM Cross-sectional view and EDS elemental mapping of the corrosion product formed at 12 MPa CO₂ and 80°C with 2000 ppm_v H₂S.

Figure 12: XRD surface analysis of a CS sample exposed at 12 MPa CO₂ and 80°C with 2000 ppm_v.

^{© 2022} Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

Figure 13: SEM images of corroded surfaces of samples after corrosion product removal: (a) 12 MPa CO₂, 80°C, 1000 ppm_v H₂S, (b) 12 MPa CO₂, 80°C, 2000 ppm_v H₂S.

Experiments at 12 MPa CO₂ and 2000 ppm_v H₂S with CI

As a summary, Figure 14 shows the change of corrosion rate of carbon steel with different H_2S concentrations (from 0 to 2000 ppm_v) at 25°C and 80°C under 12 MPa CO₂ condition. The corrosion rates with H_2S concentrations <1000 ppm_v were taken from a previous study.⁶ It can be clearly seen that the addition of small amounts of H_2S reduced the corrosion rate in the presence of high partial pressure of CO₂. However, these reduced corrosion rates were still high and additional protection was required to achieve admissible values (i.e., < 0.1 mm/y). Thus, a series of tests with addition of CI were carried out with the aim of reducing the corrosion rate of carbon steel in the high pressure CO₂ environment with 2000 ppm_v H_2S . A CI concentration of 400 ppm_v was selected based on previous results in high pressure CO₂ environments with and without 200 ppm_v H_2S .

Figure 14: Change of corrosion rate of CS with H₂S concentrations at different temperatures under 12 MPa CO₂ condition (48-62 hours of exposure).

The corrosion behavior of carbon steel with 400 ppm_v of CI in environments with 12 MPa CO₂ and 2000 ppm_v H₂S at 25°C and 80°C is shown in Figure 15. It is seen that 400 ppm_v of CI reduced the corrosion

© 2022 Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

rate to values lower than 0.1 mm/y for both temperatures. This effect was more pronounced at 25° C, where corrosion rates stabilized at ~0.002 mm/y, while corrosion rates at 80°C seemed to stabilize at ~0.09 mm/y.

Figure 15: Corrosion rate for CS with 400 ppm_v of CI at 12 MPa CO₂ and 2000 ppm_v H₂S (25°C and 80°C).

Surface analysis of the samples exposed with 400 ppm_v CI (Figure 16) showed no visible corrosion attack for both tested temperatures.

Figure 16: SEM images of the surfaces of samples exposed with 400 ppm_v of CI at 12 MPa CO₂ and 2000 ppm_v H₂S: (a) 25°C, (b) 80°C.

Since the final corrosion rate of carbon steel exposed at 80°C with 400 ppm_v of CI was close to the admissible value of 0.1 mm/y (Figure 15b), it was decided to perform an additional test with a lower CI concentration of 200 ppm_v to check if corrosion rate could increase significantly above the targeted threshold.

Figure 17 shows the corrosion behavior of carbon steel with 200 ppm_v of CI at 12 MPa CO_2 and 80°C with 2000 ppm_v H₂S. The initial corrosion rate was low at about 0.02 mm/y. However, it slowly increased

^{© 2022} Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

with time to 0.13 mm/y after 66 hours, indicating that 200 ppm_v of CI was not sufficient to reduce corrosion rate below the targeted value of 0.1 mm/y under the present conditions. A significant amount of corrosion products were found on the surface of the sample exposed with 200 ppm_v of CI at 80°C as shown in Figure 18. These corrosion products contained mainly iron and sulfur suggesting the formation of FeS.

Figure 17: Variation of corrosion rate for CS with 200 ppm $_{v}$ CI at 12 MPa CO₂ and 80°C with 2000 ppm $_{v}$ H₂S.

Figure 18: SEM surface view and EDS analysis of the corrosion product formed with 200 ppm_v CI at 12 MPa CO₂ and 80°C with 2000 ppm_v H₂S.

CONCLUSIONS

The effect of H_2S (up to 2000 ppm_v) and CI on the aqueous corrosion behavior of carbon steel was evaluated at high pressure (12 MPa) CO₂ conditions at 25°C and 80°C. The following conclusions are drawn:

 The presence of 1000 ppm_v and 2000 ppm_v of H₂S decreased the corrosion rate of carbon steel. However, the final corrosion rates were still higher than the targeted admisible value of 0.1 mm/y; thus, the addition of corrosion inhibitor was needed to control corrosion.

© 2022 Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).

- The corrosion rate increased with increasing H₂S concentration from 1000 ppm_v to 2000 ppm_v. The corrosion product layers were found to be formed mainly of FeS (Mackinawite).
- No localized corrosion was observed with 1000 ppm_v and 2000 ppm_v H₂S under the tested high pCO₂ condition.
- The addition of 400 ppm_v of imidazoline-based corrosion inhibitor suscessfully reduced the corrosion rate of carbon steel below 0.1 mm/y at 25°C and 80°C in environment with 12 MPa CO₂ and 2000 ppm_v H₂S. Lower inhibitor concentrations are not recommended at 80°C.

REFERENCES

- 1. M.F. Mohamed, A. Mohammed Nor, M.F. Suhor, M. Singer, Y.S. Choi, S. Nesic, "Water Chemistry for Corrosion Prediction in High-pressure CO₂ Environments," CORROSION 2011, paper no. 11375 (Houston, TX: NACE, 2011).
- A. Mohammed Nor, M.F. Suhor, M.F. Mohamed, M. Singer, S. Nesic, "Corrosion of Carbon Steel in High CO₂ Environment: Flow Effect," CORROSION 2011, paper no. 11245 (Houston, TX: NACE, 2011).
- 3. Y. Zhang, X. Pang, S. Qu, X. Li, K. Gao, "The Relationship between Fracture Toughness of CO₂ Corrosion Scale and Corrosion Rate of X65 Pipeline Steel under Supercritical CO₂ Condition," *International Journal of Greenhouse Gas Control* 5 (2011): p. 1643.
- 4. A. Mohammad Nor, M.F. Suhor, M.F. Mohamed, M. Singer, S. Nesic, "Corrosion of Carbon Steel in High CO2 Containing Environments: the Effect of High Flow Rate," CORROSION 2012, paper no. 0001683 (Houston, TX: NACE, 2012).
- 5. Y.S. Choi, D. Young, S. Nesic, L.G.S. Gray, "Wellbore Integrity and Corrosion of Carbon Steel in CO₂ Geologic Storage Environments: A Literature Review," *International Journal of Greenhouse Gas Control* 16S (2013): p. S70.
- Y.S. Choi, S. Hassani, T.N. Vu, S. Nesic, A.Z.B. Abas, A.M. Nor, M.F. Suhor, "Strategies for Corrosion Inhibition of Carbon Steel Pipelines Under Supercritical CO₂/H₂S Environments," *Corrosion* 75 (2019): p. 1156.
- 7. L. Wei, X. Pang, K. Gao, "Effect of Small Amount of H₂S on the Corrosion Behavior of Carbon Steel in the Dynamic Supercritical CO₂ Environments," *Corrosion Science* 103 (2016): p. 132.
- 8. K. Li, Y. Zeng, J.L. Luo, "Influence of H₂S on the General Corrosion and Sulfide Stress Cracking of Pipelines Steels for Supercritical CO₂ Transportation," *Corrosion Science* 190 (2021): 109639.
- 9. S. Paul, "Effect of H₂S on the Corrosion and Cracking Behavior of Welded API 5L X65 Steel in Supercritical CO₂," CORROSION/2021, paper no. 16407 (Houston, TX: NACE, 2021).
- 10. L. Wei, X. Pang, K. Gao, "Corrosion of Low Alloy Steel and Stainless Steel in Supercritical CO₂/H₂O/H₂S Systems," *Corrosion Science* 111 (2016): p. 637.
- 11. Y.S. Choi, F. Farelas, L. Paolinelli, S. Nesic, A.Z.B. Abas, A.M. Nor, M.F. Suhor, "Effect of H₂S on CO₂ Corrosion of Mild Steel in HPHT Conditions," CORROSION/2021, paper no. 16622 (Houston, TX: NACE, 2021).
- 12. C.M.C. Maya, "Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance" (Ph.D. thesis, Ohio University, 2015).

^{© 2022} Association for Materials Protection and Performance (AMPP). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP. Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP. Responsibility for the content of the work lies solely with the author(s).