Erosion in Disturbed Liquid/Particle Pipe Flow: Effects of Flow Geometry and Particle Surface RoughnessK
by
J. Postlethwaite* and S. Nesic**
Abstract

Erosion rates were measured along the length of a tubular flow cell of type 304 (UNS S30400) stainless steel (SS) carrying dilute slurries of silica sand (0.43 mm diam) and
smooth glass beads of a similar size. The segmented test cell contained a sudden constriction, a sudden expansion, and a groove to produce disturbed flow conditions. Erosion rates were reduced by changes in the cell wall geometry that resulted from erosion at positions of high local metal loss and from erosion further downstream because of the reduction in turbulence and particle dispersion. Smoothing of the sand
particles in the test system halved the erosion rates; however, reduced erosion rates obtained with the sand were 2 orders of magnitude higher than those produced with the glass beads. This difference was attributed to surface microroughness of the particles.

Full Text