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Abstract

The present paper addresses two major concerns that were identified when developing
neural network based prediction models and which can limit their wider applicability in the
industry.

The first problem is that it appears neural network models are not readily available to a
corrosion engineer. Therefore the first part of this paper describes a neural network model of
CO, corrosion which was created using a standard commercial software package and simple
modelling strategies. It was found that such a model was able to capture practically all of the
trends noticed in the experimental data with acceptable accuracy. This exercise has proven that
a corrosion engineer could readily develop a neural network model such as the one described
below for any problem at hand, given that sufficient experimental data exist. This applies even
in the cases when the understanding of the underlying processes is poor.

The second problem arises from cases when all the required inputs for a model are not
known or can be estimated with a limited degree of accuracy. It seems advantageous to have
models that can take as input a range rather than a single value. One such model, based on the
so-called Monte Carlo approach, is presented. A number of comparisons are shown which
have illustrated how a corrosion engineer might use this approach to rapidly test the sensitivity
of a model to the uncertainities associated with the input parameters. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Prediction of corrosion rates is difficult. The complexity of the underlying phys-
ico-chemical phenomena is often such that our understanding is significantly below a
level required for mechanistic modelling. The heterogeneous electrochemical pro-
cesses underlying corrosion are difficult to capture with a mechanistic model, even
without the additional complications commonly introduced by environmental,
metallurgical and mechanical aspects of the problem. Therefore, researchers have in
the past often resorted to empirical modelling of various complexities. In this pa-
per the discussion is going to be narrowed down to CO, corrosion of carbon steel,
although most of the methodology and argumentation applies to a broader field
of corrosion modelling.

A thorough review of the field of CO, corrosion prediction has recently been
published [1]. The numerous models of CO, corrosion were grouped into three
categories: mechanistic, semi-empirical and empirical models, based on how firmly
they were grounded in theory. Since the mentioned review a number of new mod-
elling studies have appeared [2-5], following much of the same approaches as out-
lined in the review. The performance of different models, covering all three groups,
was recently tested by comparing the predictions with a large experimental CO,
corrosion database. The fully empirical model based on the neural network ap-
proach performed significantly better than the others while the fully mechanistic
model was worst in this comparison.

After this benchmarking exercise which has highlighted neural network based
modelling, a number of possible pathways were explored for their further develop-
ment and application to prediction of CO, corrosion. As a result, a hybrid model
was created recently which combines the reliability of a mechanistic model with the
flexibility of the neural network approach. Results of this study will appear soon.
The present paper addresses two major concerns which were identified when de-
veloping the neural network prediction models and which can limit their more
general applicability in the industry.

(1) The existing neural network model of CO, corrosion [6] owes its prediction
success, in the first place, to the sophisticated design and training strategies which
were used in model development. For example, the evolved descriptor approach
implemented through Fourier series “closed” many gaps in the empirical database,
while the genetic algorithm, which guided the neural network training process,
avoided pattern memorization. The details of this neural network model are ex-
plained elsewhere [6]. The obvious shortcoming of this approach is that most of the
advanced modelling techniques which were employed there are not readily available
to a corrosion engineer who might be interested in creating her/his own neural
network model for the corrosion process at hand, without having to become a neural
network expert. Therefore this paper describes an attempt to create a successful
neural network model of CO, corrosion using a standard commercial software
package and simple modelling strategies. Indeed any other process (be it corrosion or
not) where a large enough reliable database exists, could have been used in this
exercise.
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(2) When attempting to use a particular model, one typically has to provide all the
required inputs before an output can be found. This poses a problem to a user who
might not know all the required inputs or can estimate them only with a limited
degree of accuracy. Therefore it seems advantageous to have a model which can take
a range (distribution, real or guessed) of values rather than a single value as input. In
the second part of the present paper one such model based on the so-called Monte
Carlo approach is presented. The neural network model of CO, corrosion models
developed in this study was used to illustrate this approach, however any other
model could have been used within the same Monte Carlo model framework.

Only in a handful of cases neural networks were used in the past to predict
corrosion behaviour. The risk of stress corrosion cracking [7], onset of crevice cor-
rosion [8], interpretation of polarization scans [9], and in the most recent paper,
atmospheric corrosion [10], were successfully modelled using this technique. In most
of these studies the neural networks outperformed the more traditional curve-fitting
techniques.

In the following sections, a brief background is first presented for the three cor-
nerstones of the present work: CO, corrosion, neural networks and the Monte Carlo
method, followed by the presentation of the models and their testing.

2. Theoretical background
2.1. CO; corrosion

Aqueous CO; corrosion of carbon steel is an electrochemical process involving
the anodic dissolution of iron and the cathodic evolution of hydrogen. The overall
reaction is:

Fe + CO, + H,O — FeCO; + H, (1)

The electrochemical reactions are often accompanied by the formation of solid
films of FeCOj; (and/or Fe;0,4) which can be protective or non-protective depending
on the conditions under which they are formed. One of the most important indi-
vidual reactions is the anodic dissolution of iron:

Fe — Fe’ +2e” (2)

It is believed that the presence of CO, increases the rate of corrosion of mild steel
in aqueous solutions by increasing the rate of the hydrogen evolution reaction. The
presence of H,COj; enables hydrogen evolution at a high rate even at pH > 5. Thus
at a given pH the presence of CO, leads to a higher corrosion rate than would be
found in a solution of a strong acid. It is not known whether H,CO; is reduced
directly (as assumed by many workers in the field [12,14]) or that it serves as an extra
source of H" ions. Many have assumed that the two reactions are independent and
the net cathodic current is the sum of the currents for the two reactions [14,17]:

2H' +2¢” — H, (3)
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2H,CO; + 2~ — H, + 2HCO; (4)

For more details on CO, corrosion the reader is referred to a number significant
publications covering this field [11-18]. Particular attention is drawn to the recent
reviews of the main design considerations [19] and prediction techniques related to
CO, corrosion [20] compiled by the European Federation of Corrosion.

2.2. Neural networks

Neural networks are models which can be “trained” to forecast, by developing a
correlation between a known set of input and output problem descriptors. The
learning capability is achieved through its architecture, structured as a network of
interconnected non-linear computational units called “neurones”, organized in
multiple layers, not unlike biological neural cells. Each neurone is characterized by a
transfer function, responsible for non-linear interpretation (“learning”) of input
signals, scaled between 0 and 1. Each connection between the neurones is given a
numerical weight, which represents a conductivity of the connection. When the
neural network is “learning”, the weights are iteratively recalculated until the error
of prediction is minimized.

A back propagation neural network [21], used in the present model, consists of
three interconnected neurone layers: input, hidden and output layers, as shown in
Fig. 1. The network learns by adjusting the connection weights using a gradient-
descent technique based on minimization of squared network errors, obtained in
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Fig. 1. Back propagation neural network.
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comparison between network interpretation of training input patterns and known
training outputs. During the training, the network adjusts its weights to obtain better
answers simultaneously with backward error propagation through the network
layers. The training efficiency depends on interaction between neurone transfer
functions and typical training patterns. For more details on the basic theory and
application of neural networks see some of the cited references [22,23].

2.3. Monte Carlo method

To account for the uncertainties in the input parameters influencing the output, in
this case the corrosion rate, a Monte Carlo method has been used [24]. It is assumed
that the one or more of the input parameters have a Gaussian distribution (other
distributions can be assumed instead). The Gaussian distribution is specified by
giving the mean, u and the standard deviation, ¢ (where —co < y < co and ¢ > 0). A
continuous random variable x is said to have a normal (Gaussian) distribution if the
probability density function of x is:
e~ (—1?/(20%)

flxp0) =

1
V2no

Once the mean and the standard deviation for the distribution are given (specified
by a user) the question remains how to generate a random value of x which satisfies
this distribution. In the present work, this is done by applying the polar form of the
Box—Mueller transformation, which generates normally distributed random num-
bers from uniformly distributed random numbers [25]. The latter can be obtained
from numerous random number generators built into most computers. Before each
uniform random number is generated a randomize function is used to generate a seed
for the subsequent random number generation. This is an important step needed to
obtain independent random numbers. In this work default random number and
randomize generators in Microsoft Excel were used.

The algorithm starts by generating two independent random numbers u; and u,
which come from a uniform distribution (defined between 0 and 1). These numbers
are then converted into two independent Gaussian random numbers, g; and g,, with
a zero mean and a standard deviation of one. The final Gaussian random variables x;
and x, used as input into the Monte Carlo model are obtained by multiplying g; and
g» with the standard deviation and adding the mean.

X =80+pu
Xy =0+ U
For N normally distributed random input parameters, x;,x,,x3, . .., Xy the output

(corrosion rate) is calculated N times resulting in a distribution of output values
CR|,CR,,CRj,...,CRy. A mean and standard deviation can be calculated as:
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3. Neural network model of corrosion

The neural network model presented in this study was created using the Neuro
Shell® 2 package [26]. This is a general-purpose software package, which contains 16
common neural network algorithms. It combines ease of use with lots of control over
how the networks are trained. Parameter defaults make it easy to get started and the
package provides generous flexibility and control for later experimentation. It uses
spreadsheet files, but can import other types of data structures. Runtime facilities
include a source code generator, 3D graphics (response surfaces), etc. For more
details refer to the original www site [26].

The experimental database of Dugstad et al. [18] was used for training of the
neural network (courtesy of Institute for Energy Technology, Norway). It covers a
broad range of experimental conditions: temperature ¢ = 20-90°C, pipe flow velocity
v =0.1-13 m/s, pH = 3.5-7, CO, partial pressure pco, = 0.3-26 bar, ferrous ion
concentration Fe*' = 1-230 ppm. The corrosion rate was measured on flat diago-
nally mounted St52 steel coupons using a radioactive measuring technique in ex-
periments, which lasted from a few days to a few weeks. Long duration experiments
were needed to obtain stable corrosion rates due to growth of iron carbide films.
Most of the experiments were conducted under conditions where protective films did
not form, however, in some of the high temperature experiments precipitation of
iron carbonate scales may have occurred. For more details on the experimental
techniques and the results see the original paper [18].

All the networks created and tested had five input parameters: water flow velocity,
pH, temperature, partial pressure of CO, and concentration of Fe’>* ions and one
output: the corrosion rate. A number of different neural networks were tested by
varying the network architecture and by changing the network parameters such as
the number of nodes in each layer, the kind of transfer functions used, the training
patterns, etc. The best network was selected as the one that had the highest predictive
accuracy when compared to the experimental database.

After many experiments, guided primarily by trial and error, the best neural
network was identified. ! It had a standard three-layer network architecture with the
hidden layer divided into three “blocks” of neurones (see Fig. 2). Different transfer
functions were used for the neurones in each bock (tanh, logistic, and Gaussian in
hidden layers 1, 2, and 3 respectively). The neurones in the input layer of this net-
work used a linear transfer function for the five input variables, while those in the

" This work was done by a fourth year Mechanical Engineering student without any previous
experience in neural network modelling.
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Corrosion

Fig. 2. The optimum neural network architecture identified in the present work.

output layer used a logistic transfer function to produce a value for the predicted
corrosion rate. This architecture was the most successful one in capturing the
complex non-linear relationship between the input and output parameters. The
numbers of neurones in each layer were 5 in the input layer, 30 in the hidden layer
(10 in each block) and 1 in the output layer. It was found that an increase in the
number of neurones in the hidden layer improved the performance of the network up
to a point when any further increase did not contribute to the learning process.
Actually there is an argument in the literature that when the number of neurones (i.e.
connections between the neurones — adjustable weights) exceeds the number of
training cases the network begins to memorise the correct answers and loses the
capability of generalization [22].

3.1. Comparisons

A comparison between the measured corrosion rate values and those predicted by
the most successful network is shown in Fig. 3. A good model would have most the
points fall close to the diagonal line. The correlation factor for the present model was
7> = 0.91. In order to put the performance of this simple neural network model into
a proper perspective the performance of the four previously tested models [1] using
the same data is shown below in Fig. 4. It can be seen that the current model per-
formed better than the mechanistic (EC) and the two widely used semi-empirical
models (SHELL and IFE) while it was inferior to the more sophisticated neural
network model (NN).

3.2. Parametric testing

Parametric tests were performed in order to observe the network’s response to
variations in input conditions. This was done for two reasons:
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(a) non-linear empirical models in general can perform poorly when taken outside
the domains where they were trained (calibrated) and sometimes even in between
widely spaced experimental values (in the data “gaps”);

(b) to test the ability of the developed network to generalize the results and cap-
ture the trends suspected to exist in the experimental data.

For these tests, the neural network was given arrays of input data where a single
input parameter changed while the others were kept constant. The responses of the
neural network are shown below for the cases of varying flow velocity (Fig. 5a),
temperature (Fig. 6a), pH (Fig. 7a) and CO, partial pressure (Fig. 8a). The sensi-
tivity of the corrosion rate to the changes in Fe>™ was negligible and is not shown.
Below each of the figures showing the network performance, the corresponding
trends extracted from the experimental data are shown. Since in many cases all the
exact parameters could not be matched, the closest experimental conditions were
selected. In response to the two concerns listed above it can be concluded:

(a) In all cases the predictions are monotonous even for the cases when the exper-
imental points used for training were “wide apart”. When taken outside the
bounds of the experimental data the network performed also monotonously.

(b) Nearly all of the trends noticed in the experimental data are present in the pre-
dictions. For example:

(1) It is known that higher velocities typically lead to higher CO, corrosion
rates. However, in some instances the dependence can be reversed by the presence of
iron carbide films which are known to accelerate corrosion. Their removal at higher
velocities can lead to a reduction in the corrosion rate. While this is noticed at
lower temperatures, at higher temperatures it is not the case as precipitated iron
carbonate might hold the iron carbide in place. This behaviour shown clearly by
the experimental results in Fig. 5b is reproduced by the neural network as shown
in Fig. 5a.

(2) A general increase in the CO, corrosion rate is expected with increasing
temperature up to 60-80°C, followed by a reduction at higher temperatures which
occurs due to protective iron carbonate film precipitation, as shown in Fig. 6b. This
trend is captured by the network (Fig. 6a) and includes the iron carbide related
“crossover effect” also seen in the experiments, which was explained in the point
above.

(3) The overall reduction of the corrosion rate with increasing pH, seen in the
experiments and illustrated in Fig. 7b, is reproduced by the network in Fig. 7a. The
“crossover effect” in this case, seen both in the experiments and the predictions, is
related to the absence or very loose adherence of iron carbide films at low pH.

(4) Finally, the dependence of the corrosion rate on CO, partial pressure is shown
in Fig. 8a and b. While the suspected 0.7 power law relationship, suggested by the
pioneering work of de Waard and Milliams [12], is difficult to discern in the ex-
perimental data, the predictions clearly confirm this trend for pco, > 1 bar. For CO,
partial pressures below 1 bar the dependency fades to zero as would be expected
from theory.
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Fig. 5. (a) Predicted sensitivity of the corrosion rate to flow velocities change for a range of temperatures;
other conditions: pco, = 2 bar, pH = 5, [Fe’"] = 50 ppm. (b) Measured sensitivity of the corrosion rate to
flow velocity change for a range of temperatures; data taken from the KSC2 database [18]; other con-
ditions: unbuffered water, pco, = 2 bar. Points represent measurements, the lines highlight the trends.

4. Probabilistic predictions

A probabilistic Monte Carlo method was applied to the neural network model of
CO, corrosion described above by randomizing the input parameters. This was
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velocities; other conditions: pco, = 2.5 bar, pH = 5, [Fe’"] = 50 ppm. (b) Measured sensitivity of the
corrosion rate to temperature change for two different flow velocities; data taken from the KSC2 database
[18]; pco, = 2.5 bar. Points represent measurements, the lines highlight the trends.

achieved by defining a mean value and a standard deviation for a given parameter
and by assuming a normal (Gaussian) distribution. In most cases one parameter was
randomized at a time while all other input parameters were kept constant. By
changing the mean and the standard deviation, the sensitivity of the model to the
selected input parameter could be determined.

Two resulting distributions of the corrosion rate obtained for a normal distri-
bution of input flow velocity are shown in Fig. 9. It is clear that higher flow velocity
leads to a higher corrosion rate but also that the corrosion rate is not sensitive to a
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Pco, = 1.4 bar, T = 40°C. Points represent measurements, the lines highlight the trends.

variation in the flow velocity in this regime. The explanation for this can be found by
looking at Fig. 9. The same variation in the input flow velocity should have a larger
effect on the corrosion rate at lower velocities as it represents a larger relative change.
However, the real reason for the observed behaviour can be found by looking at Fig.
5 where the corrosion rate vs. flow velocity curve for 40°C has a near-zero slope at §
m/s while at 2 m/s the slope is positive. It should also be noted that at the low ve-
locity the resulting distribution of the corrosion rate is near-normal (given the
normal distribution of the input flow velocity).

A similar conclusion can be drawn from Fig. 10 where the sensitivity of the
corrosion rate to a variation in pH is shown. Without exception, a narrow distri-
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bution of corrosion rates is predicted at pH 6.5 while at pH 4 a broad near-normal
distribution is obtained at much higher values. For interpretation use Fig. 7. Yet
another similar example is shown in Fig. 11 for pco, sensitivity with reference to Fig.
8. Note that the narrowest corrosion rate distribution is obtained for the case with
the largest relative change in pco, .
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Fig. 10. Distribution of the corrosion rate resulting from a normal variation in pH (other conditions:
T = 40°C, [Fe*"] = 50 ppm, v = 13 m/s, pco, = 1.4 bar).

Interesting behaviour can be observed in Fig. 12. The two selected temperatures
are not far apart however two very different variations in the corrosion rate are
obtained — a near-normal distribution for 50°C and a very skewed distribution for
70°C. The explanation can once again be found by looking back at Fig. 6. Tem-
perature of 50°C relates to the sloped part of the curve suggesting that a variation of
temperature around 50°C would result in corrosion rates, either larger or smaller
than the ones obtained for 50°C. However, 70°C is very near the maximum point in
Fig. 6. Therefore any variation of temperature around 70°C (be it positive or neg-
ative) always results in a smaller prediction for the corrosion rate than obtained at
70°C, hence a skewed distribution in Fig. 12.

Another way of using the probabilistic predictions is to maintain the mean value
of the input parameters constant while varying the standard deviation. One example
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Fig. 12. Distribution of the corrosion rate resulting from a normal variation in temperature (other con-
ditions: pH = 5, [Fe’"] = 50 ppm, v = 13 m/s, pco, = 1.4 bar).

is shown in Fig. 13. There a mean temperature of 55°C was used with two different
standard deviations of 1°C and 6°C. In the results it can be observed that for a
standard deviation of 1°C the resulting corrosion rate distribution had a mean value
of 9.8 mm/year with a standard deviation of 0.36 mm/year. This practically means
that nearly all the predictions were between 9 and 11 mm/year. For a standard de-
viation of 6°C, the corrosion rate distribution had a mean value of 10 mm/year and a
standard deviation of 1.9 mm/year meaning that the results were scattered between
2.5 and 14 mm/year. Practical implications of these results are straightforward.
When using the above neural network package to predict the CO, corrosion rate, if
one operates with an uncertainty in temperature of 1°C there should be little concern
with respect to the resulting uncertainty in output results. On the other hand, an
uncertainty in temperature of 6°C would mean an unacceptable scatter in the



1388 S. Nesic et al. | Corrosion Science 43 (2001) 1373-1392

100%

mean temperature T=55°C

80% A
60% - standard deviation 1°C

40%

Resulting frequency

20%

standard deviation 6°C

0% A
01 2 3 45 6 7 8 9 10 11 12 13 14
Corrosion rate / (mm/y)

Fig. 13. Distribution of the corrosion rate resulting from a normal variation in temperature (other con-
ditions: pH = 5, [Fe*"] = 50 ppm, v = 13 m/s, pco, = 1.4 bar).

predictions. Similar arguments could be drawn about the uncertainties with respect
to velocity, pH and pco, shown in Figs. 14-16.

So far results were presented where only one parameter at a time was randomized
while other parameters were held constant. For a careful analyst, although con-
venient this technique did not offer much new information compared to the parametric
study shown above. However, when there exist simultaneous uncertainties in two or
more parameters, a deterministic analysis using the parameter study plots becomes
rather complicated. On the other hand, the probabilistic Monte Carlo method works
just as smoothly with any number of randomized parameters. The only price to be
paid is an increasing sample size required for getting reproducible distributions.

To illustrate this point, a base case was selected: temperature ¢t = 50°C, pipe flow
velocity v = 8 m/s, pH 4, CO, partial pressure pco, = 1.4 bar, ferrous ion concen-
tration Fe*" = 50 ppm. Given these inputs the deterministic prediction using the

100%
® Tmean velocity 6 m/s

- 80% - standard deviation
e 0.1 m/s
(3]
3 60%
o
()]
£ 40%
?
& o standard deviation

20% - 1m/s

0% SE—— T 11 1T —

0 1 2 3 4 5 6 7 8 9 10
Corrosion rate / (mm/y)

Fig. 14. Distribution of the corrosion rate resulting from a normal variation in velocity (other conditions:
pH = 5, [Fe?"] = 50 ppm, T = 40°C, pco, = 1.4 bar).
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Fig. 15. Distribution of the corrosion rate resulting from a normal variation in pH (other conditions:
T = 40°C, [Fe*]=50 ppm, v=13 m/s, pco, = 1.4 bar).
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Fig. 16. Distribution of the corrosion rate resulting from a normal variation in pco, (other conditions:
pH = 5, [Fe**] = 50 ppm, v = 13 m/s, T = 40°C).

neural network is a corrosion rate of 15.88 mm/year. Subsequently, velocity, pH and
temperature were randomized. The standard deviations used were for velocity:
oy, = 0.4 m/s, for pH: o,z = 0.1 pH units and for temperature: ¢, = 5°C. The re-
sulting corrosion rate distributions in case of individual variations of the three
parameters is shown in Fig. 17. The mean and standard variations of the pre-
dicted corrosion rate are listed in Table 1 below. It is clear that the mean predicted
corrosion rate is similar in all cases while the biggest scatter in the predictions is
obtained due to individual temperature variation. The standard deviation obtained
with individual temperature variation is nearly an order of magnitude higher than
the one obtained for velocity variation. When more than one input parameter is
varied simultaneously, the mean does not change significantly. The standard devi-
ation is just slightly higher than the larger of the two obtained for individual vari-
ation of the same parameters. The same conclusion applies when all three parameters
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Fig. 17. Distribution of the corrosion rate resulting form individual variations of velocity, pH and tem-
perature. Mean input parameters: pH = 4, [Fe?'] = 50 ppm, v = 8 m/s, T = 50°C, pco, = 1.4 bar. Stan-
dard deviations g, = 0.4 m/s, g,y = 0.1 pH units, ¢, = 5°C.

are varied simultaneously as illustrated in Fig. 18, which is remarkably similar to
Fig. 17. A practical consequence for a corrosion engineer should be comforting: it is
sufficient to identify the parameter producing the largest uncertainty, while the
others then contribute very little to the overall variability of the predictions.

5. Conclusions

(1) Based on experimental data, an effective neural network model of CO, cor-
rosion was created using a standard commercial general-purpose software package
and simple modelling strategies. The developed model performed better then the

Table 1
Mean and standard deviation of the predicted corrosion rate resulting from variations of velocity, pH and
temperature®

Mean predicted corro- Standard deviation in the pre-
sion rate (mm/year) dicted corrosion rate (mm/year)

Only velocity variation 15.85 0.16

Only pH variation 15.89 0.73

Only temperature variation 15.77 1.18

Velocity and pH variation 15.85 0.74

Velocity and temperature varia- 15.75 1.20

tion

pH and temperature variation 15.79 1.36

Velocity, pH and temperature 15.85 1.39

variation

4Mean input parameters: v = 8 m/s, pH = 4, T = 50°C, [Fe**] = 50 ppm, pco, = 1.4 bar. Standard
deviations o, = 0.4 m/s, g, = 0.1 pH units, o, = 5°C.
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Fig. 18. Distribution of the corrosion rate resulting form variations of velocity, pH and temperature.
Mean input parameters: pH = 4, [Fe**] = 50 ppm, v = 8 m/s, T = 50°C, Ppco, = 1.4 bar. Standard devi-
ations o, = 0.4 m/s, o,y = 0.1 pH units, o, = 5°C.

previously tested mechanistic and two widely used semi-empirical models, while it was
inferior to the more sophisticated neural network model, all tested with the same data.

(2) Parametric testing of the model was performed in order to observe the net-
work’s response to variations in input conditions. In all cases the predictions were
monotonous even if the experimental points used for training were in some cases
“wide apart”. When taken outside the bounds of the experimental data, the network
performed monotonously. Nearly all of the trends noticed in the experimental data
were captured by the network.

(3) A neural network model such as the one described above could be readily
developed by a corrosion engineer for any problem at hand, given that sufficient
experimental data exist. This applies even in the cases when the understanding of the
underlying processes is poor.

(4) A probabilistic Monte Carlo method was implemented and linked to the
neural network model of CO, corrosion. The combined model was tested by ran-
domizing the input parameters. A number of comparisons presented above have
illustrated how a corrosion engineering might use this approach to rapidly test
the sensitivity of the model to the uncertainties associated with the input parameters.
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