
Architecture and Design of Corrosion Prediction
Software Multicorp

Arkopaul Sarkar
Institute of Corrosion and Multiphase Technologies

Ohio University
Athens, Ohio

sarkara1@ohio.edu

Dušan Šormaz
Institute of Corrosion and Multiphase Technologies

Ohio University
Athens, Ohio

sormaz@ohio.edu

Abstract: Multicorp is a corrosion prediction application based on
a simulation engine called CorrSim developed in FORTRAN.
Multicorp application is able to take information on various chemical
and environmental conditions from user through a user interface. An
underlying model called Multicorp Model is responsible for
managing, calculating, transferring data to CorrSim engine and also
reporting corrosion rate and other information. Multicorp
application also supports persistent storage and retrieval of various
corrosion prediction models as a form of XML files. In this paper, the
architecture of Multicorp application, including its data model, data
storage and retrieval strategies as well as flow of data within models
and engine and general use case demo.

Index Terms—Software, Design Pattern, Case Study, XML,
Corrosion

I. INTRODUCTION

Institute of Corrosion and Multiphase Technology (ICMT),
part of Ohio University, has been conducting research on
internal corrosion of oil wells and pipelines for more than two
decades. An industrial consortium joined by worlds twelve
leading oil and chemical companies not only supports the
entire research and facilities but also work closely with
researchers to investigate new ways to deal with corrosion in
multiple areas in refinery, rig and transportation of crude oil.

Multicorp, developed by Institute of Corrosion and
Multiphase technology researchers and developers, models
different electrochemical mathematical equations which can
predict underlying corrosion faithfully by taking information
on physic-chemical environment. Multicorp software is able to
predict corrosion rate for various environment through
numerical simulation of the chemical reactions over time and
helps user to analyze the root cause of the corrosion with an
insightful analysis dashboard.

Although the core of the simulation engine, called CorrSim,
is developed in FORTRAN, Multicorp model built in Visual
Basic .NET package is solely responsible for managing
modeling information which is basically different parameters
of physico-chemical environment. Section II describes a brief
background of Multicorp development. In section III, the
architecture of the model and its instantiation strategy is
described in detail. Multicorp implements its own file system
to store modeling data persistently. In section IV a detailed
discussion on storage and retrieval strategy of Multicorp is

presented. In section V, overall flow of the data among models
and user interface connection to CorrSim engine and build
strategy of Multicorp application is discussed. A walkthrough
of the user interface of Multicorp along with analysis of
different performance metrics of Multicorp is presented in
section VI. Before all of these, a short history of Multicorp is
presented in the next section.

II. BACKGROUND OF MULTICORP

Corrosion prediction in oil and gas pipelines is a critical
aspect of modern oil and gas exploitation [1]. Models to predict
corrosion can be classified into two groups:

Empirical models are based on experimental measurement
of corrosion rates, and regression model (or multiregression
models) to fit the experimental data. Those models tend to be
rather simple (deWard [2]) and they capture limited ranges of
independent variables (for which experiments were
performed). Some of those models have been implemented and
marketed as corrosion prediction standards (Norsok [3]) and
software [4].

Mechanistic models, which attempt to capture the electro-
chemical processes that govern corrosion formation, including
mass transport, diffusion, gas and liquid flow, and electrolyte
formations. Those models are of different levels of complexity.
Freecorp [5] uses a simplified electrochemical model of steady
state corrosion formation to predict corrosion rates. Solution to
corrosion formation has been presented in the form of a system
of partial differential equations describing both transitional and
steady state behavior [5]. Such model is usually solved by
some finite difference method in the form of dynamic
simulation

Multicorp software is based on the work by Nesic and his
collaborators at ICMT in modeling multiphase flow corrosion
mechanisms. Solution to partial differential equations is
obtained by in-house solver, which is now converted into
CorrSim solver implemented in Fortran 90. Initial versions of
Multicorp (MULTICRP V3 and MULTICORP V4) were
implemented in VB6 as preprocessor and User-interface
language. The work described in this paper relates to redesign
of those earlier systems into efficient corrosion prediction tool
using the modern software development technologies (object
oriented modeling, XML, and MVC paradigm).

106 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

https://www.researchgate.net/publication/222575917_Key_issues_related_to_modeling_of_internal_corrosion_of_oil_and_gas_pipelines_-_A_review?el=1_x_8&enrichId=rgreq-1f3b171ec075ca4e9dbec4de7466af70-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQyNDExMDtBUzoxMjYyNDY4MDU1Nzc3MjhAMTQwNzExMDk5MjE0OA==

III. MULTICORP MODEL

Multicorp Model defines different types of physical and
chemical environments through different classes from a
hierarchical class model. The class model is created by taking
advantage of inheritance property of any object oriented
modeling where different sub-models inherit attributes and
properties from their parent model. The entire Multicorp Model
is depicted in the UML class diagram in figure 1. Brief
descriptions of important models in the Multicorp are given
below.

A. AbstractModel

The root of the model is an abstract class called
AbstractModel which owns all general attributes and properties
of every model in Multicorp. Two most important attributes of
AbstractModel are two collections which store parameters and
parameter groups for individual models. All other attributes
can be classified into three different categories.

Identifier attributes – Identifier attributes store model
specific identification data. ModelName stores the textual name
of the model, ModelID stores the runtime instance number of
the model, ModelType stores the type of model and
ParentModel holds the textual name of the parent model.

UI attributes – UI attributes help model to connect to the
GUI element, manages different user interaction in the model.
Few examples of these type of attributes are DisplayName
(textual name of the model shown on the UI), mInstruction
(text to store instruction for a particular model), ModelState
(state of the model at a certain time of the corrosion modeling
process) and few integer flags to identify different states of the
model during user interaction and execution.

Listener attributes – Every model registers to different
listeners in Multicorp to either respond to any user interaction
on GUI or any change in other models. Through listeners
models work in a coherent and synchronized manner in
Multicorp. All listeners are stored in a collection called
ModelListeners.

AbstractModel also has the set of most generic properties.
Most of these properties are either targeted to managing
different attributes of the model notably parameters and
parameter groups. There are a set of properties which are
designated to read and write into XML files meant for
persistent storage of data. Another set of properties perform all
types of calculation in the model based on the values of
parameters. The calculation properties are mainly overridden in
sub models and different chemical equations are implemented
which perform calculation to produce results specific to a
particular model.

B. CompositionModel

Composition model is inherited from ChemistryModel
which is in turn inherited from Abstractmodel. Chemistry
model is responsible for storing contents of different chemical
components of aqueous, gas and hydrocarbons in the system.
Numerous chemical calculation is performed in this model to
calculate the percentage of different ions in the system,

concentration of gas and other chemicals and saturation level
of pH and other hydrocarbons.

C. FlowModel

Flow model is responsible for capturing different metrics
for defining the condition of various gas and liquid flow in the
pipeline. FlowModel itself is an abstract class inherited from
AbstractModel. FlowModel is further classified by two abstract
classes such as, AbstractGasFlow for gas flow and
AbstractLiquidFlow for liquid flow. Different flow parameters
such as, viscosity, velocity, surface tension, percentage of
mixture and superficial velocity is used to calculate not only
the flow rate of the oil, water, or mixture in the pipeline but
also flow pattern, stress on the pipeline, slug deposition rate
and water wetting durations.

D. CondensationModel

CondensationModel is a special type of corrosion model
which captures environmental parameters which affects the
corrosion of the top of the pipeline. This class is inherited from
AbstractCondensationModel which in turn is inherited from
AbstractModel. CondensationModel captures pipe quality,
outside environment variable for either land, ocean or air and
insulation data. This model can calculate water and
hydrocarbon condensation rate at top of the pipeline.

E. PipeLineModel

PipeLineModel is inherited from ProtoPipeline which is an
abstract class extended from AbstractModel. PipelineModel
lets user to define pipe topography. Pipelines can be layed in
100m sections with chosen inclination and declination. Along
with the topography, every pipeline section also stores
individual properties such as, diameter, roughness, thickness of
wall, conductivity and one or more insulation layer and their
properties.

F. CorrosionModel

CorrosionModel is the most important model of Multicorp
because this model manages the simulation. As Corrsim is
packaged in a Fortran DLL file, this model also manages native
function calls to Corrsim dll. Multicorp application supports
three types of simulations, single point, parametric and line.

Corrosion at a single point is simulated over time through
PointModel, which is inherited from Abstract Model.
Parametric simulation simulates corrosion over time by varying
different parameters. Batch Model is mainly responsible for
managing this type of simulation. In the end, LineModel
manages line run, which simulates corrosion along the length
of pipeline. Both BatchModel and LineModel class are
inherited from MultiplexModel class which is inherited from
AbstractModel.

G. Parameter Model

Multicorp Models stores data in different types of
parameters. Parameters are tightly linked to user interface
elements. Every types of parameter are inherited from
AbstractParameter class (see Figure 2).

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 107

Figure 1: Class hierarchy diagram of Multicorp Model

Figure 2: Multicorp Parameter model

108 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

Parameter class is the most used type of parameter which
stores values of different types of chemical and physical
species and samples. It is worth to mention that Multicorp
supports multiple languages and unit conversion. Every
parameter thus also has list of units it supports along with
conversion factors. This enables user to change units of
individual parameter separately on the fly. Parameter also
stores two types of limits such as, hard limit and soft limit. For
the reason that corrosion chemistry is always valid in a certain
range of these parameters, user can be warned easily with the
help of these limits, in case any value is entered which violates
these limits.
 Every model stores several parameters from same family
under a parameter group. Parameter group class ParamGroup
is also inherited from AbstractModel giving Multicorp model
tremendous flexibility to store parameters either directly under
a model or under a parameter group. Two special types of
parameter groups are ParamTable and ParamRow, both
inherited from ParamGroup. These two special Parameter
groups are responsible for storing table data. Same principle is
applied to store PipeLine topology data in PipeLineModel
where each pipe section data is stored in individual ParamRow.

H. Multicorp Model association and dependency

Multicorp system instantiate different models to build a
complete corrosion profile, based on the options chosen. For
example, a corrosion model investigating bottom of the line
corrosion for only water flow and simulating corrosion at
single point will consist of instances of CompositionModel,
SinglePhaseFlowModel and PointModel. CorrosionCase,
inherited from AbstractModel, is also a model but it works as
composite. Following classical composition pattern, where
multiple similar objects are stored in a composite,
CorrosionCase stores multiple instances of various model
classes. As every model including CorrosionCase is inherited
from same AbstractClass, any generic operation requested to
CorrosionCase may also requested to all other objects in
CorrosionCase. This is mainly useful for least common
denominator type of operations such as, data load, calculation
and save, where this composition model provides tremendous
ease in development and object management. However, it is to
be noted that in traditional composition model, Composite
associates with its components individually by ‘has a’
relationship. In CorrosionCase, all models are stored in a
collection of type AbstractModel. These collection stores
instances of specific subtypes at runtime but CorrosionCase
can perform any least common denominator type operation on
any model stored in the collection without knowing which
subtype it is calling the operation on.

I. Multicorp factories and prototypes

Multicorp implements abstract factories to return concrete
instances of models casted into abstract parent class of the
particular model. One factory is created for each of the main
models such as; Composition, Flow, Condensation, Pipeline,
Simulation, and CorrosionCase (see Figure 3). Every factory
class is singleton and has a static function createModel,
inherited from AbstractFactory which returns the instance of

the model. Thus, user needs to know only the type of
AbstractFactory to access createModel method of any other
factory. In this way, complex conditional statements are
abstracted in the factory class and concrete model classes are
never exposed.

Figure 3: Abstract factories to instantiate Multicorp Model

Moreover, abstract factories don’t create instance of any
model directly. Instantiation process of any model is complex
and heavy of memory as it includes I/O operations and XML
query (explained in section IV). Therefore an ingenious object
oriented design pattern, called prototype, is implemented to
avoid repetitive execution of performance-heavy operations.
Prototype is a classical creational pattern often used along with
Abstract Factory. Prototype design pattern leverages on
reusability of objects and saves memory and execution time
[6]. AbstractModel class being the base class of all other model
implements a pure virtual clone which is implemented by sub-
models (See Figure 4). ProtoManager is a singleton class,
which implements a collection to store instances of every
model, which are called prototypes. When any model is
requested by the corresponding factory, ProtoManager
performs a deep clone on the prototype instance saved in the
collection and returns it. Deep clone copies every attribute
from the prototype to the clone but doesn’t store any reference
between them. Thus changes on the cloned instance doesn’t
impact prototype instances.

Figure 4: Prototype pattern in Multicorp

IV. DATA MANAGEMENT

Multicorp system models corrosion by making composite
of different models. This is explained in Section III.H. As a
desktop application Multicorp saves model data in an XML
formatted file. One big reason for choosing XML as a
formatting style is that XML is a well-formed document as
well as extremely flexible to support any user defined schema
[7]. In addition to DTD is a common practice to ensure the
validity of the document, Multicorp needs set of parameters for
each model with default values, units and limits besides just the

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 109

structural integrity of the document. Therefore Multicorp uses
a default XML document which stores all default values,
descriptions, UI tags, units and limits for every parameter
inside a well-planned XML node hierarchy which defines the
composite structure of models. When Multicorp is asked to
save the modelling data, it creates another XML document of
type .mcinput, which follows the same node hierarchy as in
default XML document and but stores only current values for
individual parameters. As many non-changeable attributes of
the parameters are always found from default XML document,
.mcinput file doesn’t store that information, resulting in much
smaller file size.

Along with .mcinput Multicorp also saves simulation data
and some temporary files along its process. They are listed
below.

.mcorp - This is an archive file which contains other
Multicorp files , which are .mcinput - Stores model data .input - FORTRAN generated pre simulation data .output – FORTRAN generated simulation results .mccase – Multicorp generated case file to execute in

CorrSim project.
.tmpinput – A binary file of type .dat which contains object

serialized data. This is used to save state of CorrosionCase
temporarily.

The entire strategy of handling different files is explained
as a flow chart in Figure 5.

Start

Instantiate new
CorrosionCase

Create Folder with name
NewCase_<SessionID>

Create a new
Session.

C:\Users\<UserName>\AppData\
Roaming\Multicorp\temp\

Is existing file
opened?

Rename folder to
CaseName_<SessionID>

Yes
Open exisiting

.mcorp file

Is session
saved?

Create .mcinput

No

Save session

Save file path and case
name in CorrosionCase

Save case file
Get .output and
.input from temp
folder if available

Create .mcorp
archive and save

Get File path and
Case name from
save file dialog

Save Pipeline
Save Serialized Pipeline Model in C:\

Users\<UserName>\AppData\
Roaming\Multicorp\temp\pipeline\

YesSave Pipeline

Yes

Is the session
already saved?

Delete Temp folder from
appdata

YesClose Multicorp

No

Figure 5: Multicorp file management strategy

Multicorp system is going through rapid evolution. In near
future Multicorp system is going to be available through
service APIs in near future. Moreover, work is also underway

for transforming Multicorp into multi-tier web based product.
Multicorp data architecture supports multiple types if data
sources and storage system besides XML. To facilitate this,
AbstractModel implements variable of type i. DataHandler is
an interface which contains pure virtual methods such as,
saveModel and loadModel. This interface is extended by
concrete data handlers such as, XMLHandler or
DatabaseHandler as displayed in Figure 6. Concrete handlers
implement complex data management operations specific to
the data targets. However, models don’t need to know those
specifics of data management and can simply call saveModel
or loadModel method on the handler variable to load and save
data.

Figure 6: Abstracting data handling in Multicorp

V. SYSTEM ARCHITECTURE

In this section different design aspects of the overall system
are discussed.

A. User Interface

Multicorp desktop application is built in conventional
model-view-controller architecture. Multicorp model,
discussed in section III, manages the data. Different view
element depends on various controller classes, either custom or
member of .net framework. The smooth interaction between
GUI elements and data models is established by
implementation of observer pattern, in which event raised by
any GUI element is broadcasted to all observers registered to
the event sender. For example if user changes a value of a
parameter in GUI, every model listening to the event, will
trigger the corresponding action (See Figure 7).

Figure 7: Observer pattern in Multicorp

This particular pattern lets the execution control transition
from view to model seamlessly over a loose coupling between
listener and sender [6]. The user interface of Multicorp is built
closely following Microsoft Office’s ribbon style [8].The
interface is separated in four resizable areas, such as, ribbon
area (top), process area (left), data area (middle) and trace area

110 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

(bottom) (See Figure 8). Ribbon area contains buttons, which
triggers generic actions on Multicorp models. Every time a
new tab is selected buttons are changed depending on the tab
content. Process area shows the steps to create a corrosion
model and also displays the status of every model. Data area
displays parameters in groups, charts, tables and various other
output elements. In the end trace area displays vital messages
including warning and errors at the time of corrosion modeling.

Figure 8: Multicorp user interface

In Figure 9 the loading sequence of Multicorp user interface
components is explained in a sequence diagram. In the
sequence diagram, it is shown that MulticorpWindowApp is
the starting point of execution, which in turn instantiates and
run MulticorpForm in a separate UI thread. MulticorpForm
extends .NET library class for UI container called Form.
MulticorpForm instantiates and build different panels, namely,
RibbonArea, MiddleArea and StatusArea inside it
sequentially. MiddleArea is the container for different other
panels; such as, ProcessArea, TracePanel, and
InstructionBoard.

B. Dynamic Modeling

One of the unique features of Multicorp is to create
additional models on the fly addition to the existing models.
Every model of Multicorp, when instantiated to be part of a
corrosion case, they are stored in a hash table as key value pair,
where key is the name of the model. As explained in section

III.H, when user request an action performed on a specific
model, corresponding model is retrieved from the hash table
and subsequent operation is performed on the model. This is
possible because every generic function is owned by
AbstractModel. The most important operation to be performed
on any model is calculation of corrosion and various data.
Models are capable of calculating itself too. This calculation is
done based on the input parameters. Any new model created on
the fly needs to know its parameters. This can be achieved by
defining parameters and storing them in the parameter hash
table of the new model. Next the model need to know
implement a calculate function. The calculate method is not a
part of AbstractModel but an interface called ICalculate. When
a new model is created, a concrete implementation of
ICalculate is supplied to the model. As the new model is
extended from AbstractModel and AbstractModel has a
dependency on the ICalculate, when user requests calculate
operation on the model, the calculate method from the concrete
calculation class is called. Moreover, every model is capable of
storing multiple instances of subclass of ICalculate. At any
point of time, only one instance is set active, however, it gives
tremendous flexibility to users because alternative calculation
logic can be implemented and compared without rewriting
same block of code.

C. Multicorp build strategy

Multicorp is distributed in four different versions. They are
Standard(CC-JIP), Water-Wetting(WW-JIP), Topcorp(TLC-
JIP) and Topcorp-Water-Wetting(TLC-WW-JIP). Standard
version provides basic features with other version including
extra features on top of it. To facilitate this segregation,
Multicorp is built in different functionally segregated modules
(see Figure 10). Every module is compiled into separate DLL
file. This type of modularized development helps Multicorp to
package only required DLLs for a particular version and
distribute as installable.

Corrsim is a separate FORTRAN development and has its
own modular structure.

Figure 9: Sequence diagram of Multicorp GUI building process

InstructionBoard

Notes ProcessArea

TraceArea

RibbonArea

StatusArea

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 111

After that compilation dependency, configured in Multicorp
solution, links Corrsim DLL to Multicorp DLLs as
reference. In that way, Multicorp function can make direct
call to Corrsim functions.

Figure 10: Package dependencies in Multicorp

Figure 11: Multicorp screen for configuring various models

Figure 12 Multicorp screen for defining the pipeline topology

Figure 13 Multicorp screen showing dynamic simulation

VI. DEMO AND PERFORMANCE ANALYSIS

Multicorp has been tested with two groups of corrosion
engineers: faculty and graduate students at ICMT (15-20
engineers), and ICMT industrial partners (25-30 engineers)
in order to finalize it GUI to correspond to the ways that
corrosion engineers would use to predict corrosion rates.
Resulting user interfaces are shown in few figures. Figure
11 shows the general input screen where user configures
various models that need to be calculated, by selecting select
corrosion, flow and simulation type. All other tabs are
dynamically generated once three selections are made. It is
to be noted that the process tree shows the all steps required
before simulation may be performed. Currently available tab
and steps possible in that tab are indicated with a red arrow
and all other tabs which are not available are marked as
locked. The screen in Figure 12 show how user defines line
topology in pipeline tab which only appears when line run is
selected as simulation type. An interactive pipeline modeler
helps user to define pipeline over an intended topology. The
screen in Figure 13 shows the simulation tab while user is
running a simulation and can monitor its progress in a
dynamic plot.

Multicorp is also tested for its computationally efficiency
and it has shown order of 10x speed up over previous
version. In addition it is continuously been validated against
experimental results obtained in ICMT labs and from its
industrial partners.

REFERENCES

[1] S. Nešić, “Key issues related to modelling of internal
corrosion of oil and gas pipelines – A review,”
Corros. Sci., vol. 49, no. 12, pp. 4308–4338, Dec.
2007.

112 Int'l Conf. Software Eng. Research and Practice | SERP'14 |

[2] C. de Waard, U. Lotz, and D. E. Milliams,
“Predictive Model for CO 2 Corrosion Engineering
in Wet Natural Gas Pipelines,” Corrosion, vol. 47,
no. 12, pp. 976–985, Dec. 1991.

[3] NORSOK, “M-506 CO2 corrosion rate calculation
model.” NORSOK, p. Rev. 2, 2005.

[4] Wood Group Intetech, “Electronic Corrosion
Engineer.” 2013.

[5] S. Nešić, H. Li, J. Huang, and D. Sormaz, “An open
source mechanistic model for CO2/H2S corrosion of
carbon steel,” in NACE International Corrosion
Conference & Expo, 2009.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design patterns: elements of reusable object-oriented
software. Pearson Education, 1994.

[7] S. Holzner, Inside XML. Indianapolis, Indiana: New
Riders Publishing, 2001.

[8] D. You, “Re-engineering of the Legacy Software
Systems by using Object-Oriented Technologies,”
Ohio University, 2013.

Int'l Conf. Software Eng. Research and Practice | SERP'14 | 113

