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ABSTRACT 

Bayesian network is employed to estimate a risk-based life cycle cost of corrosion for assets. It has been 
highly recognized that inclusion of mechanistic models to a Bayesian network can increase the 
confidence in estimation of corrosion rates. However, coefficients of mechanistic models are often 
unknown, especially when complex rate processes are involved, which discourages the usage of the 
model. A methodology is proposed here, to introduce a mechanistic model as a bias to a regressive 
machine learning (ML) algorithm. No attempts have been made to obtain phenomenological coefficients 
of the mechanistic model. Instead, a methodology is proposed to obtain a highly tuned parameter vector 
for a ML algorithm from a learning set of corrosion rate data. 

Key words: corrosion modelling, machine learning algorithm, rate processes, supervised learning, non-
linear regression 

INTRODUCTION 

A constant challenge persists among corrosion engineers to estimate and predict field corrosion rates 
despite the huge advancements in corrosion science. This situation has compelled the corrosion 
engineers to opt for the machine learning (ML) algorithms for corrosion prediction. However, the 
“blackbox” ML algorithms are not appreciated in high stakes decisions because they use arbitrary fitting 
models rather than scientific principles.1 Learning achieved by such an algorithm is confined to itself and 
no useful knowledge can be acquired from it. Hence, it is necessary to include mechanistic models into 
machine learning algorithms for more confident prediction of corrosion rates. 

According to the latest impact report by NACE, global economic loss due to corrosion was estimated to 
be $2.5 trillion in 2013, of which 15 to 35% could be saved by implementing proper corrosion control and 
management practices.1 Bayesian network (BN), a probabilistic learning algorithm with cause-
consequence type structure, is utilized in calculation of indirect costs from the failure, especially in cases 
when localized failure mechanisms are expected.1 Learning, and consequently the reliability, of BN 
depends on input corrosion data, which can be generated by mechanistic models, mined from expert 
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knowledge, or simply being available from the field.2 Among these, the mechanistic models are the most 
preferable to generate corrosion rate data used in preparing conditional probability tables for BN.2,3 

However, there is an inherent inaccuracy associated with any corrosion model either due to deficient 
mechanistic description or unknown coefficients, which leads to poor estimation of corrosion rates. 
Typically, a corrosion model is constructed out of the most feasible mechanistic description derived from 
the experimental results. However, the models often fail to estimate accurate field corrosion rates 
because coefficients of the rate equations are determined from laboratory data obtained in ideal 
environment which may be far from the field conditions. 

A hybrid approach is adopted here to use ML algorithms with input of a mechanistic model as scientific 
information to obtain highly tuned parameters by using corrosion data for learning. The values of these 
parameters may not resemble to coefficients of the rate equations. However, prediction of such a 
scientifically informed ML (SciML) algorithm is more reliable than the “blackbox” ML algorithms. The 
proposed methodology serves as a general framework to integrate a mechanistic model into a ML 
algorithm for more confident prediction of corrosion in high stakes decisions, which can be applied to any 
corrosion system after specific modifications. 

CORROSION MODEL 

In general, physical modelling of any corrosion system involves electrochemical reactions, chemical 
reactions, and mass transport of corrosive species for which rate equations are derived from the 
principles of electrochemistry, chemical science, and fluid mechanics. When experimental corrosion rate 
data evidently conforms to a particular rate law, the reaction involved is considered to be limited by that 
step of the overall mechanism. After confirming the “rate limiting step” for given experimental conditions, 
the experimental variables are further manipulated in such a way that a different step of the mechanism 
becomes rate limiting and so on. This procedure is repeated until all anticipated steps of the mechanism 
are confirmed and the master corrosion rate equation may be derived by coupling the rates of individual 
steps. If some of the anticipated steps of the corrosion mechanism are not feasible to conform 
experimentally, then they must be deduced rationally. Such mechanistic models resemble to the true 
nature of corrosion phenomena and thus they are highly dependable for prediction of corrosion rates if 
accurate values of coefficients can be determined.  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Steps to construct mechanistic corrosion model. 
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The algorithm described above can be used to determine the rate limiting step in a mechanistic corrosion 
model. However, an accurate value of a coefficient of that step cannot be exclusively determined from 
the values of corrosion rates and associated system variables. The rate limiting step is connected with 
prior and later steps of the mechanistic sequence which places fundamental limitation over determination 
of coefficients associated with the rate limiting step. This is explained by  
Figure 2 by using an analogy of flux/rate with electrical current and mechanistic steps as resistances in 
series. Consider that the experiment requires to determine all three resistances of unknown value by 
measuring current for an applied voltage. From this experiment, only total resistance can be determined 
and if value of one of the resistances, e.g., 𝑅2, is significantly higher than the rest, its value can be 
approximated to be equal to total resistance by ignoring the others. This introduces fundamental error of 
𝑅𝑡 − (𝑅1 + 𝑅3).  Similarly, determination of coefficients associated with the rate limiting step always has 
an error associated with it, especially significant when the rest of the steps are not much faster than the 
rate limiting step. 
 

  𝑗 =
𝑉

𝑅𝑡
 where, 𝑅𝑡 = 𝑅1 + 𝑅2 + 𝑅3  

 
Figure 2: Analogy of corrosion process with several mechanistic steps with electrical circuit 
with series of resistors. 
 
Moreover, prediction of field corrosion rates by a mechanistic model is often inaccurate because 
continuously evolving system variables in the field, e.g., composition, temperature, pressure are different 
than in the laboratory environment. The present methodology attempts to overcome this limitation by 
using a mechanistic model in a regressive machine learning algorithm. Any mechanistic model can be 
treated to obtain model constants using this methodology if it is physically and mathematically consistent. 

The first step of building a corrosion model requires listing all the mechanistic steps and associated rate 
equations. For example, a simple corrosion model consists of transport of corrosive species towards the 
surface followed by surface electrochemical or chemical reactions. These steps are listed with respective 
rate equations in Table 1. 

The second step is to connect the mechanistic steps by the condition of mass conservation. 
Concentration of corrosive species decrease and that of corrosion product increase during a nonflow 
process for which a mass accumulation term appears in the equation. However, in flow condition, which 
is the most common in the field, rates of all steps of the mechanism are equalized in absence of any 
mass accumulation. 
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Table 1 Mechanistic steps in a simple corrosion model with associated rate equations 

Mechanistic Step Rate Equation Coefficients 

Mass transport of 
corrosive species towards 
the surface 

Flux 𝑓 = 𝜅(𝐶{𝑏} − 𝐶{𝑠}) Mass transfer coefficient 𝜅 

Reaction at the surface 

• Electrochemical reaction in 
cathodic reaction control such as 
reduction of hydrogen 

Rate 𝑟 = 𝐴exp [
−(𝐸𝑎+𝛽𝐹𝜂)

𝑅𝑇
] 𝐶{𝑠} 

or 

• Chemical reaction in non-aqueous 
corrosion 

Rate 𝑟 = 𝐴exp (
−𝐸𝑎

𝑅𝑇
) 𝐶{𝑠} 

Pre-exponential factor 𝐴 

Activation energy 𝐸𝑎 

Overpotential 𝜂 

Tafel slope 𝛽 

 
𝐶= concentration of corrosive species, 𝑇 = absolute temperature, superscripts represent location of 
corrosive species, 𝑏 = bulk fluid, and 𝑠 = near surface of metal  

The following equations can be obtained for overall rate of corrosion for non-accumulating or flow 
condition by equating flux with reaction rate per unit area from Table 1. 

𝑟 =
𝜅𝐴exp[

−(𝐸𝑎+𝛽𝐹𝜂)

𝑅𝑇
]𝐶

𝐴exp[
−(𝐸𝑎+𝛽𝐹𝜂)

𝑅𝑇
]+𝜅

   for aqueous corrosion reactions  (1) 

 

and 𝑟 =
𝜅𝐴𝑒𝑥𝑝(

−𝐸𝑎
𝑅𝑇

)𝐶

𝐴𝑒𝑥𝑝(
−𝐸𝑎
𝑅𝑇

)+𝜅
  for non-aqueous corrosion reactions (2) 

 
Superscript {𝑏} is dropped in the above equations for the purpose of simplicity. A procedure is described 
here to determine the values of the coefficients listed in Table 1 using regressive ML algorithm. 

MACHINE LEARNING ALGORITHM 

Simple regressive algorithm is explained here using equation (2) which can be converted to regression 
function(𝜁𝐛), where 𝐛 = (𝜅, 𝐴, 𝐸𝑎)as shown, and values of coefficients 𝐛 can be obtained using a “labelled” 
training set {(𝐱𝑖, 𝑦𝑖)}𝑖=1

𝑛  mined from field corrosion data, where, 𝐱𝑖 = (𝐶𝑖, 𝑇𝑖) and 𝑦𝑖 = 𝑟𝑖 are for the present 
case. 

A regressive function which supervises the learning can be written as shown by equation (3) 

𝜁𝐛( 𝐱𝑖) = 𝜁𝐛(𝐶𝑖, 𝑇𝑖) =
𝜅𝐴𝑒𝑥𝑝(

−𝐸𝑎
𝑅𝑇𝑖

)𝐶𝑖

𝐴𝑒𝑥𝑝(
−𝐸𝑎
𝑅𝑇𝑖

)+𝜅
     (3) 

Commonly used squared error loss function can be adopted as optimization objective expression as 
shown by equation (4). 
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 𝑒 =
1

𝑛
∑ [𝜁𝜅,𝐴,𝐸𝑎

(𝐶𝑖 , 𝑇𝑖) − 𝑟𝑖]
2𝑛

𝑖=1     (4) 

𝑒 =
1

𝑛
∑ [

𝜅𝐴𝑒𝑥𝑝(
−𝐸𝑎
𝑅𝑇𝑖

)𝐶𝑖

𝐴𝑒𝑥𝑝(
−𝐸𝑎
𝑅𝑇𝑖

)+𝜅
− 𝑟𝑖]

2

𝑛
𝑖=1      (5) 

Square error loss expressed by equation (4) must be minimized for the optimization of coefficients for a 
given training set {(𝐱𝑖 , 𝑦𝑖)}𝑖=1

𝑛 = {(𝐶𝑖, 𝑇𝑖 , 𝑟𝑖)}𝑖=1
𝑛 . Gradient of error loss with respect to coefficients of the 

model is set to zero to obtain system of equations with dimension 𝐷 = 3 in the present case as specified 
by equation (6). 

∇𝐛𝑒 = 𝟎        (6) 

Where, ∇𝐛= (
𝜕

𝜕𝜅
,

𝜕

𝜕𝐴
,

𝜕

𝜕𝐸𝑎
) and 𝟎 is a null vector. 

The system of non-linear equations resulting from equation (6) can be solved by iterative algorithm such 
as Newton’s method to obtain solution vector of coefficients 𝐛 = (𝜅, 𝐴, 𝐸𝑎). Care should be taken to define 
realistic ranges for the values of coefficients so that solution converges with minimum computation power. 
Ranges of coefficients, or at least the order of magnitude, can be derived from reference laboratory data. 
Convergence tolerance for iterative algorithm should be defined considering reference values of the 
coefficients. 

CONCLUSIONS 

A methodology to use mechanistic model as a bias to machine learning algorithm is proposed to be 
directly applied to flow processes which is the most common system. Values of coefficients derived from 
regression may not resemble the true value, but such physically informed machine learning algorithm 
can be used for fine tuning of model parameters and decrease the gap between predicted and measured 
values of corrosion rates. 

REFERENCES 

1. IMPACT (2016), “International Measures of Prevention, Application, and Economics of Corrosion 
Technologies” (Houston, Texas: NACE International). 

2. F. Ayello, S. Jain, N. Sridhar, G. H.  Koch, “Quantitive Assessment of Corrosion Probability—A 
Bayesian Network Approach,” CORROSION, 70 (11), (2014): pp. 1128–1147.  

3. G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, “Physics-Informed 
Machine Learning,” Nat. Rev. Phys., 3 (6), (2021): pp. 422–440. 

 

© 2023 Association for Materials Protection and Performance (AMPP).  All rights reserved.  No part of this publication may be reproduced, stored in a retrieval system, 
or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of AMPP.
Positions and opinions advanced in this work are those of the author(s) and not necessarily those of AMPP.  Responsibility for the content of the work lies solely with 
the author(s).

5


